• 제목/요약/키워드: Dental zirconia

검색결과 463건 처리시간 0.027초

냉각속도가 지르코니아-도재 수복물의 전장도재 내 잔류응력에 미치는 효과에 관한 문헌고찰 (The effet of cooling rate on the residual stresses in the veneer ceramics of zirconia-ceramic restorations: a literature review)

  • 장재승;김선재
    • 대한치과보철학회지
    • /
    • 제52권2호
    • /
    • pp.136-142
    • /
    • 2014
  • 최근 많이 이용되고 있는 지르코니아-도재 수복물은 그 적용범위가 점차로 증가하고 있다. 임상연구결과에서 지르코니아 코어는 매우 높은 성공율을 보이고 있으나 코어 위에 축성되는 전장도재는 기존에 이용되어온 금속-도재 수복물에 비해 높은 파절빈도를 나타내고 있다. 이러한 파절의 원인으로 여러가지 요소가 거론되고 있으나 아직 명확하게 설명하고 있지는 못하다. 최근 전장도재 축성 후 냉각과정에서 잔존하는 잔류응력이 전장도재의 파절에 영향을 미칠 수 있다는 연구결과가 속속 발표되고 있다. 본 고찰에서는 잔류응력이 무엇이며 도재 축성 후 냉각과정에서 어떤 기전을 통해 전장도재 내에 잔류응력이 발생하는지, 또한 기존의 금속-도재 수복물에서 발생하는 잔류응력과는 어떤 차이가 있는지 문헌고찰을 통해 살펴보고자 한다.

Gap comparison between single crown and three-unit bridge zirconia substructures

  • Anunmana, Chuchai;Charoenchitt, Masnisa;Asvanund, Chanavut
    • The Journal of Advanced Prosthodontics
    • /
    • 제6권4호
    • /
    • pp.253-258
    • /
    • 2014
  • PURPOSE. To compare marginal and internal gaps of zirconia substructure of single crowns with those of three-unit fixed dental prostheses. MATERIALS AND METHODS. Standardized Co-Cr alloy simulated second premolar and second molar abutments were fabricated and subsequently duplicated into type-III dental stone for working casts. After that, all zirconia substructures were made using $Lava^{TM}$ system. Marginal and internal gaps were measured in 2 planes (mesial-distal plane and buccal-palatal plane) at 5 locations: marginal opening (MO), chamfer area (CA), axial wall (AW), cusp tip (CT) and mid-occlusal (OA) using Replica technique. RESULTS. There were significant differences between gaps at all locations. The $mean{\pm}SD$ of marginal gap in premolar was $43.6{\pm}0.4{\mu}m$ and $46.5{\pm}0.5{\mu}m$ for single crown and 3-unit bridge substructure respectively. For molar substructure the $mean{\pm}SD$ of marginal gap was $48.5{\pm}0.4{\mu}m$ and $52.6{\pm}0.4{\mu}m$ for single crown and 3-unit bridge respectively. The largest gaps were found at the occlusal area, which was $150.5{\pm}0.5{\mu}m$ and $154.5{\pm}0.4{\mu}m$ for single and 3-unit bridge premolar substructures respectively and $146.5{\pm}0.4{\mu}m$ and $211.5{\pm}0.4{\mu}m$ for single and 3-unit bridge molar substructure respectively. CONCLUSION. Independent-samples t-test showed significant differences of gap in zirconia substructure between single crowns and three-unit bridge (P<.001). Therefore, the span length has the effect on the fit of zirconia substructure that is fabricated using CAD/CAM technique especially at the occlusal area.

치과용 지르코니아 블록의 소결온도에 따른 기계적 특성과 색조변화 (Mechanical properties and color change according to sintering temperature of dental zirconia block)

  • 나정숙
    • 대한치과기공학회지
    • /
    • 제39권3호
    • /
    • pp.145-152
    • /
    • 2017
  • Purpose: This study sought to identify changes in the mechanical characteristics and color of zirconia according to different sintering temperatures of the substance. Methods: This study processed some specimens of zirconia into those of $8mm(H){\times}10mm(W){\times}50mm(L){\pm}0.1$ each, and sintered them at $1450{\sim}1600^{\circ}C$ on a $50^{\circ}C-interval$ basis in order to examine how their mechanical characteristics and color are changed. Each specimen sintered using the spectral colorimetric apparatus (Easyshade, VITA, Germany) was observed for each of the color change by sintering temperature. Results: When those specimens were sintered at $1450{\sim}1600^{\circ}C$, they were 0% in absorption ratio and porosity, 20% in shrinkage ratio and $6.10g/cm^3$ in specific gravity. Absorption ration, porosity, shrinkage ratio and specific gravity all didn't vary depending on the sintering temperature. The fracture strength of the specimens was highest or 1037MPa at the sintering temperature of $1550^{\circ}C$ and a little lower or 989MPa at that of $1600^{\circ}C$. No variation in L* value was found depending on the sintering temperature of the specimens, while c* value was highest at that of $1450^{\circ}C$. In addition, h* value was highest when the specimens was sintered at $1550^{\circ}C$. Conclusion: This study could determine how zirconia shows changes in mechanical characteristics and color in accordance with different temperatures of its sintering. It is necessary to supplement the physical data of colored transparent zirconia block which is expected to be widely used in clinical practice.

Efficacy of various cleaning solutions on saliva-contaminated zirconia for improved resin bonding

  • Kim, Da-Hye;Son, Jun-Sik;Jeong, Seong-Hwa;Kim, Young-Kyung;Kim, Kyo-Han;Kwon, Tae-Yub
    • The Journal of Advanced Prosthodontics
    • /
    • 제7권2호
    • /
    • pp.85-92
    • /
    • 2015
  • PURPOSE. This study aimed to investigate the efficacy of cleaning solutions on saliva-contaminated zirconia in comparison to air-abrasion in terms of resin bonding. MATERIALS AND METHODS. For saliva-contaminated air-abraded zirconia, seven cleaning methods)-no contamination (NC), water-spray rinsing (WS), additional air-abrasion (AA), and cleaning with four solutions (Ivoclean [IC]; 1.0 wt% sodium dodecyl sulfate [SDS], 1.0 wt% hydrogen peroxide [HP], and 1.0 wt% sodium hypochlorite [SHC])-were tested. The zirconia surfaces for each group were characterized using various analytical techniques. Three bonded resin (Panavia F 2.0) cylinders (bonding area: $4.5mm^2$) were made on one zirconia disk specimen using the Ultradent jig method [four disks (12 cylinders)/group; a total of 28 disks]. After 5,000 thermocycling, all specimens were subjected to a shear bond strength test with a crosshead speed of 1.0 mm/minute. The fractured surfaces were observed using an optical and scanning electron microscope (SEM). RESULTS. Contact angle measurements showed that groups NC, AA, IC, and SHC had hydrophilic surfaces. The X-ray photoelectron spectroscopy (XPS) analysis showed similar elemental distributions between group AA and groups IC and SHC. Groups IC and SHC showed statistically similar bond strengths to groups NC and AA (P>.05), but not groups SDS and HP (P<.05). For groups WS, SDS, and HP, blister-like bubble formations were observed on the surfaces under SEM. CONCLUSION. Within the limitations of this in vitro study, some of the cleaning solutions (IC or SHC) were effective in removing saliva contamination and enhancing the resin bond strength.

Zirconia-Glass frit 조성에서 MgO 및 착색료가 소결체의 색상 변화에 미치는 영향 (Effect of MgO and coloring agents on the coloring in zirconia-glass frit system)

  • 권은자;최에스더;이규선;이채현
    • 한국산학기술학회논문지
    • /
    • 제10권8호
    • /
    • pp.2150-2156
    • /
    • 2009
  • 지르코니아($3Y-ZrO_2$)에 frit을 첨가하고 MgO를 조제로 첨가하거나 혹은 하소된 성형체에 액상의 착색료에 침지하는 방법을 통하여 착색하고 얻어진 소결체의 물성과 색상 변화를 고찰하였다. Frit가 20 wt% 첨가된 지르코니아-frit조성에 MgO가 첨가됨에 따른 색상의 변화는 소결온도가 높아짐에 따라 구별가능한 정도로 효과가 있음을 확인하였다. 이 때 색상의 변화 정도는 MgO의 첨가량 변화에 의한 효과 보다는 소결 온도의 변화에 의한 효과가 더 크게 나타났음을 확인할 수 있었다. 액상의 착색료에 침지한 후 소결한 경우에서는 frit의 첨가량이 증가함에 따라 반사도가 증가하는 것으로 나타났으며 착색료에 침지하지 않은 경우에 비하여 색상의 변화가 감소함을 알 수 있었고 frit은 색상의 변화를 억제하는 것으로 나타났다.

The effects of physical decontamination methods on zirconia implant surfaces: a systematic review

  • Tan, Nathan Chiang Ping;Khan, Ahsen;Antunes, Elsa;Miller, Catherine M;Sharma, Dileep
    • Journal of Periodontal and Implant Science
    • /
    • 제51권5호
    • /
    • pp.298-315
    • /
    • 2021
  • Purpose: Peri-implantitis therapy and implant maintenance are fundamental practices to enhance the longevity of zirconia implants. However, the use of physical decontamination methods, including hand instruments, polishing devices, ultrasonic scalers, and laser systems, might damage the implant surfaces. The aim of this systematic review was to evaluate the effects of physical decontamination methods on zirconia implant surfaces. Methods: A systematic search was conducted using 5 electronic databases: Ovid MEDLINE, PubMed, Scopus, Web of Science, and Cochrane. Hand searching of the OpenGrey database, reference lists, and 6 selected dental journals was also performed to identify relevant studies satisfying the eligibility criteria. Results: Overall, 1049 unique studies were identified, of which 11 studies were deemed suitable for final review. Air-abrasive devices with glycine powder, prophylaxis cups, and ultrasonic scalers with non-metal tips were found to cause minimal to no damage to implantgrade zirconia surfaces. However, hand instruments and ultrasonic scalers with metal tips have the potential to cause major damage to zirconia surfaces. In terms of laser systems, diode lasers appear to be the most promising, as no surface alterations were reported following their use. Conclusion: Air-abrasive devices and prophylaxis cups are safe for zirconia implant decontamination due to preservation of the implant surface integrity. In contrast, hand instruments and ultrasonic scalers with metal tips should be used with caution. Recommendations for the use of laser systems could not be fully established due to significant heterogeneity among included studies, but diode lasers may be the best-suited system. Further research-specifically, randomised controlled trials-would further confirm the effects of physical decontamination methods in a clinical setting.

Evaluation of intaglio surface trueness, wear, and fracture resistance of zirconia crown under simulated mastication: a comparative analysis between subtractive and additive manufacturing

  • Kim, Yong-Kyu;Han, Jung-Suk;Yoon, Hyung-In
    • The Journal of Advanced Prosthodontics
    • /
    • 제14권2호
    • /
    • pp.122-132
    • /
    • 2022
  • PURPOSE. This in-vitro analysis aimed to compare the intaglio trueness, the antagonist's wear volume loss, and fracture load of various single-unit zirconia prostheses fabricated by different manufacturing techniques. MATERIALS AND METHODS. Zirconia crowns were prepared into four different groups (n = 14 per group) according to the manufacturing techniques and generations of the materials. The intaglio surface trueness (root-mean-square estimates, RMS) of the crown was measured at the marginal, axial, occlusal, and inner surface areas. Half of the specimens were artificially aged in the chewing simulator with 120,000 cycles, and the antagonist's volume loss after aging was calculated. The fracture load for each crown group was measured before and after hydrothermal aging. The intaglio trueness was evaluated with Welch's ANOVA and the antagonist's volume loss was assessed by the Kruskal-Wallis tests. The effects of manufacturing and aging on the fracture resistance of the tested zirconia crowns were determined by two-way ANOVA. RESULTS. The trueness analysis of the crown intaglio surfaces showed surface deviation (RMS) within 50 ㎛, regardless of the manufacturing methods (P = .053). After simulated mastication, no significant differences in the volume loss of the antagonists were observed among the zirconia groups (P = .946). The manufacturing methods and simulated chewing had statistically significant effects on the fracture resistance (P < .001). CONCLUSION. The intaglio surface trueness, fracture resistance, and antagonist's wear volume of the additively manufactured 3Y-TZP crown were clinically acceptable, as compared with those of the 4Y- or 5Y-PSZ crowns produced by subtractive milling.

Comparative finite element analysis of mandibular posterior single zirconia and titanium implants: a 3-dimensional finite element analysis

  • Choi, Sung-Min;Choi, Hyunsuk;Lee, Du-Hyeong;Hong, Min-Ho
    • The Journal of Advanced Prosthodontics
    • /
    • 제13권6호
    • /
    • pp.396-407
    • /
    • 2021
  • PURPOSE. Zirconia has exceptional biocompatibility and good mechanical properties in clinical situations. However, finite element analysis (FEA) studies on the biomechanical stability of two-piece zirconia implant systems are limited. Therefore, the aim of this study was to compare the biomechanical properties of the two-piece zirconia and titanium implants using FEA. MATERIALS AND METHODS. Two groups of finite element (FE) models, the zirconia (Zircon) and titanium (Titan) models, were generated for the exam. Oblique (175 N) and vertical (175 N) loads were applied to the FE model generated for FEA simulation, and the stress levels and distributions were investigated. RESULTS. In oblique loading, von Mises stress values were the highest in the abutment of the Zircon model. The von Mises stress values of the Titan model for the abutment screw and implant fixture were slightly higher than those of the Zircon model. Minimum principal stress in the cortical bone was higher in the Titan model than Zircon model under oblique and vertical loading. Under both vertical and oblique loads, stress concentrations in the implant components and bone occurred in the same area. Because the material itself has high stiffness and elastic modulus, the Zircon model exhibited a higher von Mises stress value in the abutments than the Titan model, but at a level lower than the fracture strength of the material. CONCLUSION. Owing to the good esthetics and stress controllability of the Zircon model, it can be considered for clinical use.

심미보철용 코어재료와 베니어 세라믹 계면의 전단결합강도 비교 (Shear Bond Strength between Veneered Ceramics and Core Materials for Esthetic Restorations)

  • 김기원;박항민;정인성
    • 대한치과기공학회지
    • /
    • 제31권2호
    • /
    • pp.45-52
    • /
    • 2009
  • Esthetic restorations have been widely used in dental practice, although many studies have focused on the development and improvement of all ceramic restorations. The success of esthetic restorations depends primarily on an optimal bond strength between various veneered ceramics and core materials for esthetic restorations. The purpose of this study was to compare the shear bond strength between various veneered ceramics and core materials for esthetic restorations. 30 metal cores and 20 zirconia cores were fabricated and divided into five groups according to veneered ceramic materials such as Creation porcelain powder, Cercon Ceram Kiss, and IPS e.max ZirPress. Thirty spacimens were prepared using Creation porcelain powder, veneered 3mm height and 3mm in diameter, over the metal cores (n=10). Twenty specimens were prepared using Cercon Ceram Kiss and Zirpress, veneered 3mm height and 3mm in diameter, over the zirconia cores (n=10). The shear bond strength test was performed in a universal testing machine with a crosshead speed of 1mm/min. Ultimate shear bond strength data were analyzed with One-way ANOVA and the Scheffe's test (p=.05). Within the limits of this study, the following conclusions were drawn: The mean shear bond strengths (MPa) were: 18.44 for Uni metal VH/Creation (NCUC); 18.72 for Heraenium/Creation (NCHC); 16.23 for Wirobond C/Creation (NCWC); 13.88 for Zirconia core/$110{\mu}m$ $Al_2O_3$ sandblasting/Cercon Ceram Kiss (ZS110P); 14.61 for Zirconia core/No surface treatment/IPS e.max ZirPress (ZNTH). The mean shear bond strength for NCUC (Uni metal VH/Creation), NCHC (Heraenium/Creation) and NCWC (Wirobond C/Creation) were significantly superior to ZS110P (Zirconia core/$110{\mu}m$ $Al_2O_3$ sandblasting/Cercon Ceram Kiss) and ZNTH(Zirconia core/No surface treatment/IPS e.max ZirPress) (p<0.05).

  • PDF

Fe(NO3)3 수용액의 농도와 침지시간에 따른 지르코니아의 색상 및 특성 변화 (The change of color and physical properties of zirconia according to the variation of concentration and dipping time of Fe(NO3)3solution)

  • 서정일;박원욱;고재숙
    • 대한치과기공학회지
    • /
    • 제38권4호
    • /
    • pp.281-290
    • /
    • 2016
  • Purpose: The increased aesthetic requirements and demands of patients have resulted in the developments of coloring liquid for zirconia. Methods: In this study, zirconia block was dipped into $Fe(NO_3)_3$solution, which showed a color and then concentration of $Fe(NO_3)_3$and zirconia's color and physical properties depending on the dipping time were observed and compared with exclusive coloring solutions. As the result, the following conclusions were obtained. Results: When compared with the specimens that were colored using exclusive solutions, $L^*$ value rose overall depending on the concentration of $Fe(NO_3)_3$and $a^*$ value was red in the form of (+) in all the specimens. Also, $b^*$ value was in the form of (+) at 0.5 to $1{\ss}fl$, but was in the form of (-) at 1.5 to $2{\ss}fl$. The dipping time did not highly influence $L^*$ value, but $a^*$ value and $b^*$ value were directly opposite to the specimens, which were not colored, except the sample that was dipped for only 2 seconds. When compared with exclusive coloring solutions, $Fe(NO_3)_3$had the most similar color at 0.5 to $1{\ss}fl$ and the longer the coloring time, the higher the rate of color change became. In relation to the density change depending on the addition of $Fe(NO_3)_3$, there was the lowest density at $2{\ss}fl$ and the density was increased in the specimens that were not colored. Conclusion: These results show that $Fe(NO_3)_3$solution can be used to make colored zirconia. It is expected that newly made colored zirconia can be used in clinical practice because the colored zirconia not only possesses the mechanical properties that all ceramic core material should have but also was biocompatible to a living cells.