• Title/Summary/Keyword: Dental mini implants

Search Result 41, Processing Time 0.022 seconds

Strain of implants depending on occlusion types in mandibular implant-supported fixed prostheses

  • Sohn, Byoung-Sup;Heo, Seong-Joo;Koak, Jai-Young;Kim, Seong-Kyun;Lee, Su-Young
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.1
    • /
    • pp.1-9
    • /
    • 2011
  • PURPOSE. This study investigated the strain of implants using a chewing simulator with strain gauges in mandibular implant-supported fixed prostheses under various dynamic loads. MATERIALS AND METHODS. Three implant-supported 5-unit fixed prostheses were fabricated with three different occlusion types (Group I: Canine protected occlusion, Group II: Unilaterally balanced occlusion, Group III: Bilaterally balanced occlusion). Two strain gauges were attached to each implant abutment. The programmed dynamic loads (0 - 300 N) were applied using a chewing simulator (MTS 858 Mini Bionix II systems, MTS systems corp., Minn, USA) and the strains were monitored. The statistical analyses were performed using the paired t-test and the ANOVA. RESULTS. The mean strain values (MSV) for the working sides were 151.83 ${\mu}{\varepsilon}$, 176.23 ${\mu}{\varepsilon}$, and 131.07 ${\mu}{\varepsilon}$ for Group I, Group II, and Group III, respectively. There was a significant difference between Group II and Group III (P < .05). Also, the MSV for non-working side were 58.29 ${\mu}{\varepsilon}$, 72.64 ${\mu}{\varepsilon}$, and 98.93 ${\mu}{\varepsilon}$ for Group I, Group II, and Group III, respectively. One was significantly different from the others with a 95% confidence interval (P < .05). CONCLUSION. The MSV for the working side of Groups I and II were significantly different from that for the non-working side (Group I: t = 7.58, Group II: t = 6.25). The MSV for the working side of Group II showed significantly larger than that of Group III (P < .01). Lastly, the MSV for the non-working side of Group III showed significantly larger than those of Group I or Group II (P < .01).

Finite element analysis of maxillary incisor displacement during en-masse retraction according to orthodontic mini-implant position

  • Song, Jae-Won;Lim, Joong-Ki;Lee, Kee-Joon;Sung, Sang-Jin;Chun, Youn-Sic;Mo, Sung-Seo
    • The korean journal of orthodontics
    • /
    • v.46 no.4
    • /
    • pp.242-252
    • /
    • 2016
  • Objective: Orthodontic mini-implants (OMI) generate various horizontal and vertical force vectors and moments according to their insertion positions. This study aimed to help select ideal biomechanics during maxillary incisor retraction by varying the length in the anterior retraction hook (ARH) and OMI position. Methods: Two extraction models were constructed to analyze the three-dimentional finite element: a first premolar extraction model (Model 1, M1) and a residual 1-mm space post-extraction model (Model 2, M2). The OMI position was set at a height of 8 mm from the arch wire between the second maxillary premolar and the first molar (low OMI traction) or at a 12-mm height in the mesial second maxillary premolar (high OMI traction). Retraction force vectors of 200 g from the ARH (-1, +1, +3, and +6 mm) at low or high OMI traction were resolved into X-, Y-, and Z-axis components. Results: In M1 (low and high OMI traction) and M2 (low OMI traction), the maxillary incisor tip was extruded, but the apex was intruded, and the occlusal plane was rotated clockwise. Significant intrusion and counter-clockwise rotation in the occlusal plane were observed under high OMI traction and -1 mm ARH in M2. Conclusions: This study observed orthodontic tooth movement according to the OMI position and ARH height, and M2 under high OMI traction with short ARH showed retraction with maxillary incisor intrusion.

Comparison of fatigue fracture strength by fixture diameter of mini implants (미니 임플란트 직경에 따른 피로파절강도의 비교 연구)

  • Heo, Yu-Ri;Son, Mee-Kyoung;Kim, Hee-Jung;Choe, Han-Cheol;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.3
    • /
    • pp.156-161
    • /
    • 2012
  • Purpose: This study was conducted to obtain difference in fracture strength according to the diameter of one-body O-ring-type of mini implant fixture, to determine the resistance of mini implant to masticatory pressure, and to examine whether overdenture using O-ring type mini implant is clinically usable to maxillary and mandibular edentulous patients. Materials and methods: For this study, 13 mm long one body O-ring-type mini implants of different diameters (2.0 mm, 2.5 mm and 3.0 mm) (Dentis, Daegu, Korea) were prepared, 5 for each diameter. The sample was placed at $30^{\circ}$ from the horizontal surface on the universal testing machine, and off-axis loading was applied until permanent deformation occurred and the load was taken as maximum compressive strength. The mean value of the 5 samples was calculated, and the compressive strength of implant fixture was compared according to diameter. In addition, we prepared 3 samples for each diameter, and applied loading equal to 80%, 60% and 40% of the compressive strength until fracture occurred. Then, we measured the cycle number on fracture and analyzed fatigue fracture for each diameter. Additionally, we measured the cycle number on fracture that occurred when a load of 43 N, which is the average masticatory force of complete denture, was applied. The difference on compressive strength between each group was tested statistically using one-way ANOVA test. Results: Compressive strength according to the diameter of mini implant was $101.5{\pm}14.6N$, $149{\pm}6.1N$ and $276.0{\pm}13.4N$, respectively, for diameters 2.0 mm, 2.5 mm and 3.0 mm. In the results of fatigue fracture test at 43 N, fracture did not occur until $2{\times}10^6$ cycles at diameter 2.0 mm, and until $5{\times}10^6$ cycles at 2.5 mm and 3.0 mm. Conclusion: Compressive strength increased significantly with increasing diameter of mini implant. In the results of fatigue fracture test conducted under the average masticatory force of complete denture, fracture did not occur at any of the three diameters. All of the three diameters are usable for supporting overdenture in maxillary and mandibular edentulous patients, but considering that the highest masticatory force of complete denture is 157 N, caution should be used in case diameter 2.0 mm or 2.5 mm is used.

Complications reported with the use of orthodontic miniscrews: A systematic review

  • Giudice, Antonino Lo;Rustico, Lorenzo;Longo, Miriam;Oteri, Giacomo;Papadopoulos, Moschos A.;Nucera, Riccardo
    • The korean journal of orthodontics
    • /
    • v.51 no.3
    • /
    • pp.199-216
    • /
    • 2021
  • Objective: The aim of this systematic review was to evaluate the complications and side effects associated with the clinical use of orthodontic miniscrews by systematically reviewing the best available evidence. Methods: A survey of articles published up to March 2020 investigating the complications associated with miniscrew insertion, in both the maxilla and mandible, was performed using 7 electronic databases. Clinical studies, case reports, and case series reporting complications associated with the use of orthodontic miniscrew implants were included. Two authors independently performed study selection, data extraction, and risk-of-bias assessment. Results: The database survey yielded 24 articles. The risk-of-bias assessment revealed low methodological quality for the included studies. The most frequent adverse event reported was root injury with an associated periradicular lesion, vitality loss, pink discoloration of the tooth, and transitory loss of pulp sensitivity. Chronic inflammation of the soft tissue surrounding the miniscrew with mucosal overgrowth was also reported. The other adverse events reported were lesion of the buccal mucosa at the insertion site, soft-tissue necrosis, and perforation of the floor of the nasal cavity and maxillary sinus. Adverse events were also reported after miniscrew removal and included secondary bleeding, miniscrew fracture, scars, and exostosis. Conclusions: These findings highlight the need for clinicians to preliminarily assess generic and specific insertion site complications and side effects.

Need-to-knows about Digital Implant Surgery (디지털 가이드 수술의 이해와 임상적 적용)

  • Paek, Janghyun;Kwon, Kung-Rock;Kim, Hyeong-Seob;Pae, Ahran;Noh, Kwantae;Hong, Sung-Jin;Lee, Hyeon-jong
    • The Journal of the Korean dental association
    • /
    • v.56 no.11
    • /
    • pp.631-640
    • /
    • 2018
  • Nowadays computer-guided "flapless" surgery for implant placement using templates is gaining popularity among clinicians and patients. The advantages of this surgical protocol are its minimally invasive nature, accuracy of implant placement, predictability, less post-surgical discomfort and reduced time required for definitive rehabilitation. Aim of this study is to describe the digital implant protocol, thanks to which is now possible to do a mini-invasive static guided implant surgery. This is possible thanks to a procedure named surface mapping based on the matching between numerous points on the surface of patient's dental casts and the corresponding anatomical surface points in the CBCT data. With some critical points and needing an adequate learning curve, this protocol allows to select the ideal implant position in depth, inclination and mesio-distal distance between natural teeth and or other implants enabling a very safe and predictable rehabilitation compared with conventional surgery. It represents a good tool for the best compromise between anatomy, function and aesthetic, able to guarantee better results in all clinical situations.

  • PDF

STUDY OF MAXILLARY CORTICAL BONE THICKNESS FOR SKELETAL ANCHORAGE SYSTEM IN KOREAN (Skeletal Anchorage System의 식립을 위한 한국인 악골의 피질골 두께에 대한 연구)

  • Kim, Ji-Hyuck;Joo, Jae-Yong;Park, Young-Wook;Cha, Bong-Kuen;Kim, Soung-Min
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.28 no.4
    • /
    • pp.249-255
    • /
    • 2002
  • Recently, Skeletal Anchorage System (SAS) has been focused clinically with the view point that it could provide the absolute intraoral anchorage. First, it began to be used for the patient of orthognathic surgery who had difficulty in taking intermaxillary fixation due to multiple loss of teeth. And then, its uses have been extended to many cases, the control of bone segments after orthognathic surgery, stable anchorage in orthodontic treatment, and anchorage for temporary prosthesis and so on. SAS has been developed as dental implants technique has been developed and also called in several names; mini-screw anchorage, micro-screw anchorage, mini-implant anchorage, micro-implant anchorage (MIA), and orthosystem implant etc. Now many clinicians use SAS, but the anatomical knowledges for the installed depth of intraosseous screws are totally dependent on general experiences. So we try to study for the cortical thickness of maxilla and mandible in Korean adults without any pathologic conditions with the use of Computed Tomography at the representative sites for the screw installation.

Study on osseointegration of a Korean Transitional implant system in beagle dog (성견에서 국산 임시 임플란트의 골 유착반응에 관한 연구)

  • Lee, Wook-Jae;Jung, Jong-Won;Kim, Yun-Sang;Pi, Sung-Hee;You, Hyung-Keun;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.1
    • /
    • pp.253-263
    • /
    • 2006
  • Purpose: Recently, dental implant systems have been widely used for the treatment of the extraction site, but we have been confronted with many limitations in esthetics, phonetics and function. Transitional implants(TI) were developed as a method of providing fixed provisional restorations during conventional implant healing. Until now, little data have been provided on korean transitional implants. The purpose of this study is to evaluate the implant placement site histologically after 4 weeks and 8 weeks. Materials and Methods : Test group( IntermetzzoTM MEGAGEN, KOREA) and control group(Mini Drive Lock, Intra Rock, U.S.A.) were immediately placed in interseptal or interproximal bone of beagle dog after mandibular premolars extraction, and had a healing period with non-submerged state but without loading, Both TI surfaces were composed of rough surfaces. Results: In the test group, the average percentage of BIC were respectively 39.40%(SD7.35) after 4 weeks and 44.05%(16.76) after 8 weeks, and In the control group were 50.75%(1.48) and 59.40%(0.00). Discussion: We evaluated the initial ability of the osseointegration of TI through this study. Because TI is placed with a conventional implant simultaneously and loaded immediately, the ability of osseointegration is a very important factor for the success of TI during the initial healing phase. Conclusion: The results of the histological evaluation of these two groups were similar to those mentioned in other studies for osseointegration of implant.

Effects of self-ligating brackets and other factors influencing orthodontic treatment outcomes: A prospective cohort study

  • Jung, Min-Ho
    • The korean journal of orthodontics
    • /
    • v.51 no.6
    • /
    • pp.397-406
    • /
    • 2021
  • Objective: The purpose of this study was to evaluate the effects of self-ligating brackets (SBs) and other factors that influence orthodontic treatment outcomes. Methods: This two-armed cohort study included consecutively treated patients in a private practice. The patients were asked to choose between SBs and conventional brackets (CBs); if any patient did not have a preference, he or she was randomly allocated to the CB or SB group. All patients were treated using an identical archwire sequence. Evaluated parameters were as follows: treatment duration, number of bracket failures, poor oral hygiene, poor elastic wear, extraction, use of orthodontic mini-implants (OMI), OMI failure, American Board of Orthodontics (ABO) Discrepancy Index (DI), arch length discrepancy, and ABO Cast-Radiograph Evaluation (CRE) score. Stepwise regression analysis was performed to generate the equation for prediction of the CRE. Results: The final sample comprised 134 patients with an average age of 22.73 years. The average DI, CRE, and treatment duration were 21.81, 14.25, and 28.63 months, respectively. Analysis of covariance showed a significant difference in CRE between the CB and SB groups after adjusting for the effects of confounding variables. Stepwise regression analysis using four variables, namely extraction, SB use, poor elastic wear, and additional appliance use, could explain only 25.2% of the variance in the CRE. Conclusions: Although the CRE was significantly better for CBs than for SBs, the clinical significance of this result seems to be limited. Extraction, SB use, poor elastic wear, and additional appliance use may have significant effects on treatment outcomes.

Three-dimensional finite element analysis for determining the stress distribution after loading the bone surface with two-component mini-implants of varying length (다양한 길이의 two-component 미니 임플란트의 응력분산에 대한 3차원적 유한요소분석)

  • Choi, Bohm;Lee, Dong-Ok;Mo, Sung-Seo;Kim, Seong-Hun;Park, Ki-Ho;Chung, Kyu-Rhim;Nelson, Gerald;Han, Seong-Ho
    • The korean journal of orthodontics
    • /
    • v.41 no.6
    • /
    • pp.423-430
    • /
    • 2011
  • Objective: To evaluate the extent and aspect of stress to the cortical bone after application of a lateral force to a two-component orthodontic mini-implant (OMI, mini-implant) by using three-dimensional finite element analysis (FEA). Methods: The 3D-finite element models consisted of the maxilla, maxillary first molars, second premolars, and OMIs. The screw part of the OMI had a diameter of 1.8 mm and length of 8.5 mm and was placed between the roots of the upper second premolar and the first molar. The cortical bone thickness was set to 1 mm. The head part of the OMI was available in 3 sizes: 1 mm, 2 mm, and 3 mm. After a 2 N lateral force was applied to the center of the head part, the stress distribution and magnitude were analyzed using FEA. Results: When the head part of the OMI was friction fitted (tapped into place) into the inserted screw part, the stress was uniformly distributed over the surface where the head part was inserted. The extent of the minimum principal stress suggested that the length of the head part was proportionate with the amount of stress to the cortical bone; the stress varied between 10.84 and 15.33 MPa. Conclusions: These results suggest that the stress level at the cortical bone around the OMI does not have a detrimental influence on physiologic bone remodeling.

Patients satisfaction for implant supported overdenture with small diameter implant (작은 직경 임플란트를 이용한 임플란트 지지 피개의치에 대한 환자 만족도 조사)

  • Lee, Sang-Yeup;Choi, Dae-Gyun;Paek, Jang-Hyun;Kwon, Kung-Rock
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.1
    • /
    • pp.29-37
    • /
    • 2011
  • Purpose: In cases when implant supported overdenture is made by using standard size implant, additional procedure such as bone surgery and bone grafting can be required. And it gives burden to doctor and patient in terms of cost. Therefore, it is necessary to find the implant therapy for the edentulous patients in making denture with accordable cost and simple procedure. Materials and methods: Edentulous patients with upper and lower dentures participated in this study. Before the operation, survey about patient's satisfaction to the existing dentures was carried out. Surgical procedures included four small diameter implants installation anterior area and immediate loading. One and three month after the procedure, the same survey about patient's satisfaction was carried out, and radiography was taken. Results: We are doing research to the nine patients. Survival rate is 97.2 percent. The comparison of patient's satisfaction before and after surgery is performed based on oral health impact profile 49. We analyze mainly with masticatory discomfort, retention, aesthetics, social problem, psychological discomfort problems. As a result, satisfaction level is increased at all factors. Retention is the most increased satisfactory factor followed by mastication difficulty, pronunciation, psychological discomfort, social discomfort, aesthetics in order. Marginal bone loss is 0.21 mm at 12 weeks after implant placement. Conclusion: This research reveals that the denture supported by mini dental implant increases patient's satisfaction. This study will be continued with more patients for a long time and we are scheduled for taking additional radiography to check whether peri-implant bone resorption occurs or not.