• Title/Summary/Keyword: Dental Implant Abutment

Search Result 350, Processing Time 0.031 seconds

Finite element study on the effect of abutment length and material on implant bone interface against dynamic loading

  • Mishra, Manish;Ozawa, Shogo;Masuda, Tatsuhiko;Yoshioka, Fumi;Tanaka, Yoshinobu
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.3
    • /
    • pp.140-144
    • /
    • 2011
  • PURPOSE. Finite element study on the effect of abutment length and material on implant bone interface against dynamic loading. MATERIALS AND METHODS. Two dimensional finite element models of cylinderical implant, abutments and bone made by titanium or polyoxymethylene were simulated with the aid of Marc/Mentat software. Each model represented bone, implant and titanium or polyoxymethylene abutment. Model 1: Implant with 3 mm titanium abutment, Model 2: Implant with 2 mm polyoxymethylene resilient material abutment, Model 3: Implant with 3 mm polyoxymethylene resilient material abutment and Model 4: Implant with 4 mm polyoxymethylene resilient material abutment. A vertical load of 11 N was applied with a frequency of 2 cycles/sec. The stress distribution pattern and displacement at the junction of cortical bone and implant was recorded. RESULTS. When Model 2, 3 and 4 are compared with Model 1, they showed narrowing of stress distribution pattern in the cortical bone as the height of the polyoxymethylene resilient material abutment increases. Model 2, 3 and 4 showed slightly less but similar displacement when compared to Model 1. CONCLUSION. Within the limitation of this study, we conclude that introduction of different height resilient material abutment with different heights i.e. 2 mm, 3 mm and 4 mm polyoxymethylene, does not bring about significant change in stress distribution pattern and displacement as compared to 3 mm Ti abutment. Clinically, with the application of resilient material abutment there is no significant change in stress distribution around implant-bone interface.

Differences in percussion-type measurements of implant stability according to height of healing abutments and measurement angle (임플란트 healing abutment 높이와 타진각도에 따른 타진방식 임플란트 안정성 측정기기의 수치 차이)

  • Park, Yang-Hoon;Leesungbok, Richard;Lee, Suk-Won;Paek, Janghyun;Lee, Jeong-Yol
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.56 no.4
    • /
    • pp.278-286
    • /
    • 2018
  • Purpose: The purpose of this study was to evaluate the effect of healing abutment height and measurement angle on implant stability when using Periotest and AnyCheck. Materials and methods: 60 implants were placed into artificial bone blocks. After implant insertion, 2, 3, 4 and 5 mm healing abutments were installed on 15 specimens, respectively. Insertion torque value, implant stability test, Periotest value were measured. Insertion torque value was controlled between 45 - 55 Ncm. AnyCheck was used for measuring implant stability test and Periotest M was used for measuring Periotest value. Implant stability test and Periotest value were measured at the angles of 0 and 30 degrees to the horizontal plane. Measured values were analyzed statistically. Results: Insertion torque value had no significant difference among groups. When healing abutment height was higher, implant stability test and Periotest value showed lower stability. Also when measurement angle was decreased, implant stability test and Periotest value showed lower stability. Conclusion: When measuring stability of implants with percussion type devices, measured values should be evaluated considering height of healing abutments and measurement angle.

Energy-dispersive X-ray spectroscopic investigation of a fractured non-submerged dental implant associated with abutment fracture

  • Truc Thi Hoang Nguyen;Mi Young Eo;Kezia Rachellea Mustakim;Mi Hyun Seo;Hoon Myoung;Soung Min Kim
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.49 no.1
    • /
    • pp.43-48
    • /
    • 2023
  • The biocompatibility and durability of implant fixtures are major concerns for dentists and patients. Mechanical complications of the implant include abutment screw loosening, screw fracture, loss of implant prostheses, and implant fracture. This case report aims to describe management of a case of fixture damage that occurred after screw fracture in a tissue level, internal connection implant and microscopic evaluation of the fractured fixture. A trephine bur was used to remove the fixture, and the socket was grafted using allogeneic bone material. The failed implant was examined by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS), which revealed a fractured fixture with both normal and irregular bone patterns. The SEM and EDS results give an enlightenment of the failed fixture surface micromorphology with microfracture and contaminated chemical compositions. Noticeably, the significantly high level of gold (Au) on the implant surface and the trace amounts of Au and titanium (Ti) in the bone tissue were recorded, which might have resulted from instability and micro-movement of the implant-abutment connection over an extended period of time. Further study with larger number of patient and different types of implants is needed for further conclusion.

A Study of mechanical properties of oxide layer removed Co-Cr-Mo abutments

  • Ryu, Jae-ho;Huh, Jung-Bo;Ro, Jung-Hoon;Yun, Mi-Jung;Jeong, Chang-Mo
    • The Journal of the Korean dental association
    • /
    • v.53 no.11
    • /
    • pp.804-816
    • /
    • 2015
  • PURPOSE: The aim of this study was to evaluate the influence of the oxide layer removal process in the Co-Cr-Mo (CCM) abutment after casting procedure on the prosthesis settlement and screw stability. MATERIALS AND METHODS: CCM abutments of four different interface conditions (CCM-M; machined, CCM-O; oxide layer formed, CCM-B; blasted, CCM-P; polished after blasted) and gold abutment (Gold-C; Cast with type III Gold alloy) were used. The initial settling values of abutments were evaluated according to the difference of implant-abutment length when the tightening torques were applied at 5 Ncm and 30 Ncm, and the settling values of abutments caused by loading were evaluated according to the difference of implant-abutment length before and after loading with 250 N, 100000 cycle. The loss ratios of removal torque for abutment screws were evaluated according to the difference in value of removal torques under 30 Ncm tightening torque applied before and after cyclic loading. RESULTS: The CCM-P and CCM-B group showed a higher initial settling value compared with the Gold-C group (P<.05), while the Gold-C group showed the highest settling values caused by loading (P<.05) and no significant differences were observed for between CCM groups (P>.05). The loss ratio of removal torque values for the CCM-B, CCM-P groups did not differ significantly from that of the Gold-C group (P>.05). CONCLUSION: Even though the oxide layer was removed by different methods, CCM abutment with internal conical connection structure showed lower abutment settling and similar screw loosening after cyclic loading compared with gold abutment.

A novel retentive type of dental implant prosthesis: marginal fitness of the cementless double crown type implant prosthesis evaluated by bacterial penetration and viability

  • Hong, Seoung-Jin;Kwon, Kung-Rock;Jang, Eun-Young;Moon, Ji-Hoi
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.4
    • /
    • pp.233-238
    • /
    • 2020
  • PURPOSE. This study aims to compare the marginal fitness of two types of implant-supported fixed dental prosthesis, i.e., cementless fixation (CL.F) system and cement-retained type. MATERIALS AND METHODS. In each group, ten specimens were assessed. Each specimen comprised implant lab analog, titanium abutment fabricated with a 2-degree tapered axial wall, and zirconia crown. The crown of the CL.F system was retained by frictional force between abutment and relined composite resin. In the cement-retained type, zinc oxide eugenol cement was used to set crown and abutment. All specimens were sterilized with ethylene oxide, immersed in Prevotella intermedia culture in a 50 mL tube, and incubated with rotation. After 48 h, the specimens were washed thoroughly before separating the crown and abutment. The bacteria that penetrated into the crown-abutment interface were collected by washing with 500 µL of sterile saline. The bacterial cell number was quantified using the agar plate count technique. The BacTiter-Glo Microbial Cell Viability Assay Kit was used to measure bacterial adenosine triphosphate (ATP)-bioluminescence, which reflects the bacterial viability. The t-test was performed, and the significance level was set at 5%. RESULTS. The number of penetrating bacterial cells assessed by colony-forming units was approximately 33% lower in the CL.F system than in the cement-retained type (P<.05). ATP-bioluminescence was approximately 41% lower in the CL.F system than in the cement-retained type (P<.05). CONCLUSION. The CL.F system is more resistant to bacterial penetration into the abutment-crown interface than the cement-retained type, thereby indicating a precise marginal fit.

Effects of TiN Coating on the Fatigue Fracture of Dental Implant System with Various Cyclic Loads

  • Jung, Da-Un;Chung, Chae-Heon;Son, Mee-Kyoung;Choe, Han-Cheol
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.6
    • /
    • pp.283-291
    • /
    • 2015
  • The purpose of this study was to investigate effects of TiN coating on the fatigue fracture of dental implant system with various cyclic loads. TiN coated abutment screw, the fixture, and abutment of internal hex type were prepared for fatigue test. The fatigue test was carried out according to ISO 14801:2003(E) using tensile and compression tester with repeated load from 30% to 80% of static fracture force. Morphology and fractured surface was observed by field emission scanning electron microscope(FE-SEM) and energy dispersive X-ray spectroscope(EDS). The fracture cycle drastically decreased as repeated load increased. Especially, in the case of TiN-coated abutment screw, fracture cycle increased compared to non-coated abutment screw. The fatigue crack was propagated fast as repeated load increased. The plastic deformation region decreased, whereas, cleavage fracture region increased as repeated load increased.

Influence of abutment materials on the implant-abutment joint stability in internal conical connection type implant systems

  • Jo, Jae-Young;Yang, Dong-Seok;Huh, Jung-Bo;Heo, Jae-Chan;Yun, Mi-Jung;Jeong, Chang-Mo
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.6
    • /
    • pp.491-497
    • /
    • 2014
  • PURPOSE. This study evaluated the influence of abutment materials on the stability of the implant-abutment joint in internal conical connection type implant systems. MATERIALS AND METHODS. Internal conical connection type implants, cement-retained abutments, and tungsten carbide-coated abutment screws were used. The abutments were fabricated with commercially pure grade 3 titanium (group T3), commercially pure grade 4 titanium (group T4), or Ti-6Al-4V (group TA) (n=5, each). In order to assess the amount of settlement after abutment fixation, a 30-Ncm tightening torque was applied, then the change in length before and after tightening the abutment screw was measured, and the preload exerted was recorded. The compressive bending strength was measured under the ISO14801 conditions. In order to determine whether there were significant changes in settlement, preload, and compressive bending strength before and after abutment fixation depending on abutment materials, one-way ANOVA and Tukey's HSD post-hoc test was performed. RESULTS. Group TA exhibited the smallest mean change in the combined length of the implant and abutment before and after fixation, and no difference was observed between groups T3 and T4 (P>.05). Group TA exhibited the highest preload and compressive bending strength values, followed by T4, then T3 (P<.001). CONCLUSION. The abutment material can influence the stability of the interface in internal conical connection type implant systems. The strength of the abutment material was inversely correlated with settlement, and positively correlated with compressive bending strength. Preload was inversely proportional to the frictional coefficient of the abutment material.

A STUDY ON FITNESS OF SEVERAL DOMESTIC IMPLANT FIXTURE AND ABUTMENT SCREWS (국내제작 임프란트 고정체와 지대주 유지나사의 적합도에 대한 주사전자현미경적 비교연구)

  • Park Young-Sun;Vang Mong-Sook;Lee Seok-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.1
    • /
    • pp.94-109
    • /
    • 2004
  • Statement of problem : Several domestic dental implants have been developed since dental treatment being implants are increasing and popularized. However, they have not been used in domestic market like imported goods. Material and methods : This study was carried out to compare domestic and imported implants in aspect of fitness, dental implant fixture and abutment screw using scanning electron microscope. All experiments were performed under dry condition. Results : 1. Only in aspect of relation of dental implant fkxture and abutment screw, except only one group with point contact, good fitness was existed. 2. Home products must presevere in their efforts, so as excellent to fit.

The influence of the implant-abutment complex on marginal bone and peri-implant conditions: A retrospective study

  • Tokgoz, Selen Ergin;Bilhan, Hakan
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.1
    • /
    • pp.46-54
    • /
    • 2021
  • Purpose. The design of the implant-abutment complex is thought to be responsible for marginal bone loss (MBL) and might affect the condition of the peri-implant tissues. This the present study aimed to evaluate the influence of the implant-abutment complex on MBL and the peri-implant tissues in partially edentulous patients treated with dental implants and determine the most advantageous design. Materials and Methods. A total of ninety-one endosseous implants with different designs of implant-abutment complex [tissue level-TL (n = 30), platform switch-PS (n = 18), and platform match-PM (n = 43)] were reviewed for MBL, Probing Pocket Depth (PPD) and Bleeding on Probing (BoP). MBL was calculated for first year of the insertion and the following years. Results. The median MBL for the PM implants (2.66 ± 1.67 mm; n = 43) in the first year was significantly higher than those for the other types (P=.033). The lowest rate of MBL (0.61 ± 0.44 mm; n = 18) was observed with PS implants (P=.000). The position of the crown-abutment border showed a statistically significant influence (P=.019) and a negative correlation (r=-0.395) on MBL. BoP was found significantly higher in PM implants (P=.006). The lowest BoP scores were detected in PS implants, but the difference was not significant (P=.523). The relation between PPD and connection type revealed no statistically significant influence (P>.05). Conclusion. Within the limitations of the present study, it may be concluded that PS implants seem to show better peri-implant soft tissue conditions and cause less MBL.

Clinical case of implant restoration using customized healing abutment (맞춤형 치유 지대주를 이용한 임플란트 수복 증례)

  • Park, Jung-Wan;Hong, Min-Ho;Lee, Kyu-Bok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.3
    • /
    • pp.222-227
    • /
    • 2015
  • Aesthetic impression is emphasized in the recent field of implant restoration. However, there is limitation of creating proper shape of soft tissue as well as cervical emergence profile due to the use of pre-existing healing abutment in the process of initial post-operative soft tissue healing period. Designing the shape of abutment into the final customized abutment instead of its original shape helped to achieve more aesthetic implant restoration by applying healing abutment which could minimize the malposition and recession of soft tissue. In this study, soft tissue healing was promoted using the post-operative customized healing abutment and thereby obtained the result of more aesthetic and functional restoration by minimizing displacement of soft tissue in the process of applying final customized abutment.