DOI QR코드

DOI QR Code

The influence of the implant-abutment complex on marginal bone and peri-implant conditions: A retrospective study

  • Tokgoz, Selen Ergin (Private Dental Practice, Prosthodontist, Dentaglobal Oral Health Centre) ;
  • Bilhan, Hakan (Department of Periodontology, School of Dentistry, Faculty of Health Witten/Herdecke University)
  • Received : 2020.10.26
  • Accepted : 2021.02.05
  • Published : 2021.02.26

Abstract

Purpose. The design of the implant-abutment complex is thought to be responsible for marginal bone loss (MBL) and might affect the condition of the peri-implant tissues. This the present study aimed to evaluate the influence of the implant-abutment complex on MBL and the peri-implant tissues in partially edentulous patients treated with dental implants and determine the most advantageous design. Materials and Methods. A total of ninety-one endosseous implants with different designs of implant-abutment complex [tissue level-TL (n = 30), platform switch-PS (n = 18), and platform match-PM (n = 43)] were reviewed for MBL, Probing Pocket Depth (PPD) and Bleeding on Probing (BoP). MBL was calculated for first year of the insertion and the following years. Results. The median MBL for the PM implants (2.66 ± 1.67 mm; n = 43) in the first year was significantly higher than those for the other types (P=.033). The lowest rate of MBL (0.61 ± 0.44 mm; n = 18) was observed with PS implants (P=.000). The position of the crown-abutment border showed a statistically significant influence (P=.019) and a negative correlation (r=-0.395) on MBL. BoP was found significantly higher in PM implants (P=.006). The lowest BoP scores were detected in PS implants, but the difference was not significant (P=.523). The relation between PPD and connection type revealed no statistically significant influence (P>.05). Conclusion. Within the limitations of the present study, it may be concluded that PS implants seem to show better peri-implant soft tissue conditions and cause less MBL.

Keywords

References

  1. Pikner SS, Grondahl K. Radiographic analyses of "advanced" marginal bone loss around Brånemark dental implants. Clin Implant Dent Relat Res 2009;11:120-33. https://doi.org/10.1111/j.1708-8208.2008.00098.x
  2. Albrektsson T, Buser D, Sennerby L. On crestal/marginal bone loss around dental implants. Int J Prosthodont 2012;25:320-2.
  3. Goiato MC, Pellizzer EP, da Silva EV, Bonatto Lda R, dos Santos DM. Is the internal connection more efficient than external connection in mechanical, biological, and esthetical point of views? a systematic review. Oral Maxillofac Surg 2015;19:229-42. https://doi.org/10.1007/s10006-015-0494-5
  4. Lombardi T, Berton F, Salgarello S, Barbalonga E, Rapani A, Piovesana F, Gregorio C, Barbati G, Di Lenarda R, Stacchi C. Factors influencing early marginal bone loss around dental implants positioned subcrestally: a multicenter prospective clinical study. J Clin Med. 2019;8:1168-81. https://doi.org/10.3390/jcm8081168
  5. Pan YH, Lin HK, Lin JC, Hsu YS, Wu YF, Salamanca E, Chang WJ. Evaluation of the peri-implant bone level around platform-switched dental implants: a retrospective 3-year radiographic study. Int J Environ Res Public Health 2019;16:2570-82. https://doi.org/10.3390/ijerph16142570
  6. Rana V, Dhakne VM, Jadhawar S, Kadam I, Mishra K, Patil P. Bone level measurements around platform switched and platform matched implants: a comparative study. Niger J Surg 2019;25:9-13. https://doi.org/10.4103/njs.njs_19_18
  7. Schwarz F, Alcoforado G, Nelson K, Schaer A, Taylor T, Beuer F, Strietzel FP. Impact of implant-abutment connection, positioning of the machined collar/microgap, and platform switching on crestal bone level changes. Camlog Foundation Consensus Report. Clin Oral Implants Res 2014;25:1301-3. https://doi.org/10.1111/clr.12269
  8. Pieri F, Aldini NN, Marchetti C, Corinaldesi G. Influence of implant-abutment interface design on bone and soft tissue levels around immediately placed and restored single-tooth implants: a randomized controlled clinical trial. Int J Oral Maxillofac Implants 2011;26:169-78.
  9. Koo KT, Lee EJ, Kim JY, Seol YJ, Han JS, Kim TI, Lee YM, Ku Y, Wikesjo UM, Rhyu IC. The effect of internal versus external abutment connection modes on crestal bone changes around dental implants: a radiographic analysis. J Periodontol 2012;83:1104-9. https://doi.org/10.1902/jop.2011.110456
  10. DI Girolamo M, Calcaterra R, DI Gianfilippo R, Arcuri C, Baggi L. Bone level changes around platform switching and platform matching implants: a systematic review with meta-analysis. Oral Implantol (Rome) 2016; 9:1-10. https://doi.org/10.11138/orl/2016.9.1S.001
  11. Wallace SS. Significance of the 'biologic width' with respect to root-form implants. Dent Implantol Update 1994;5:25-9.
  12. Tarnow D, Elian N, Fletcher P, Froum S, Magner A, Cho SC, Salama M, Salama H, Garber DA. Vertical distance from the crest of bone to the height of the interproximal papilla between adjacent implants. J Periodontol 2003;74:1785-8. https://doi.org/10.1902/jop.2003.74.12.1785
  13. Lee BA, Kim BH, Kweon HHI, Kim YT. The prosthetic abutment height can affect marginal bone loss around dental implants. Clin Implant Dent Relat Res 2018;20:799-805. https://doi.org/10.1111/cid.12648
  14. Hermann JS, Buser D, Schenk RK, Cochran DL. Crestal bone changes around titanium implants. A histometric evaluation of unloaded non-submerged and submerged implants in the canine mandible. J Periodontol 2000;71:1412-24. https://doi.org/10.1902/jop.2000.71.9.1412
  15. de Oliveira RR, Novaes AB Jr, Taba M Jr, Papalexiou V, Muglia VA. Bone remodeling adjacent to Morse cone-connection implants with platform switch: a fluorescence study in the dog mandible. Int J Oral Maxillofac Implants 2009;24:257-66.
  16. Kwon HJ, Lee DW, Park KH, Kim CK, Moon IS. Influence of the tooth- and implant-side marginal bone level on the interproximal papilla dimension in a single implant with a microthread, conical seal, and platform-switched design. J Periodontol 2009;80:1541-7. https://doi.org/10.1902/jop.2009.080558
  17. Hürzeler M, Fickl S, Zuhr O, Wachtel HC. Peri-implant bone level around implants with platform-switched abutments: preliminary data from a prospective study. J Oral Maxillofac Surg 2007;65:33-9. https://doi.org/10.1016/j.joms.2007.03.024
  18. Degidi M, Iezzi G, Scarano A, Piattelli A. Immediately loaded titanium implant with a tissue-stabilizing/maintaining design ('beyond platform switch') retrieved from man after 4 weeks: a histological and histomorphometrical evaluation. A case report. Clin Oral Implants Res 2008;19:276-82. https://doi.org/10.1111/j.1600-0501.2007.01449.x
  19. Novaes AB Jr, de Oliveira RR, Muglia VA, Papalexiou V, Taba M. The effects of interimplant distances on papilla formation and crestal resorption in implants with a morse cone connection and a platform switch: a histomorphometric study in dogs. J Periodontol 2006; 77:1839-49. https://doi.org/10.1902/jop.2006.060162
  20. Lopez-Mari L, Calvo-Guirado JL, Martin-Castellote B, Gomez-Moreno G, Lopez-Mari M. Implant platform switching concept: an updated review. Med Oral Patol Oral Cir Bucal 2009;14:e450-4.
  21. Becker J, Ferrari D, Herten M, Kirsch A, Schaer A, Schwarz F. Influence of platform switching on crestal bone changes at non-submerged titanium implants: a histomorphometrical study in dogs. J Clin Periodontol 2007;34:1089-96. https://doi.org/10.1111/j.1600-051X.2007.01155.x
  22. Lazzara RJ, Porter SS. Platform switching: a new concept in implant dentistry for controlling postrestorative crestal bone levels. Int J Periodontics Restorative Dent 2006;26:9-17.
  23. Cohen J. A power primer. Psychol Bull 1992;112:155-9. https://doi.org/10.1037/0033-2909.112.1.155
  24. Gupta S, Sabharwal R, Nazeer J, Taneja L, Choudhury BK, Sahu S. Platform switching technique and crestal bone loss around the dental implants: a systematic review. Ann Afr Med 2019;18:1-6. https://doi.org/10.4103/aam.aam_15_18
  25. Spinato S, Galindo-Moreno P, Bernardello F, Zaffe D. Minimum abutment height to eliminate bone loss: influence of implant neck design and platform switching. Int J Oral Maxillofac Implants 2018;33:405-11. https://doi.org/10.11607/jomi.5604
  26. Chaytor DV, Zarb GA, Schmitt A, Lewis DW. The longitudinal effectiveness of osseointegrated dental implants. The Toronto study: bone level changes. Int J Periodont Restor Dent 1991;11:112-25.
  27. Hermann JS, Schoolfield JD, Schenk RK, Buser D, Cochran DL. Influence of the size of the microgap on crestal bone changes around titanium implants. A histometric evaluation of unloaded non-submerged implants in the canine mandible. J Periodontol 2001; 72:1372-83. https://doi.org/10.1902/jop.2001.72.10.1372
  28. Lee CT, Huang YW, Zhu L, Weltman R. Prevalences of peri-implantitis and peri-implant mucositis: systematic review and meta-analysis. J Dent 2017;62:1-12. https://doi.org/10.1016/j.jdent.2017.04.011
  29. Hasegawa M, Hotta Y, Hoshino T, Ito K, Komatsu S, Saito T. Long-term radiographic evaluation of risk factors related to implant treatment: suggestion for alternative statistical analysis of marginal bone loss. Clin Oral Implants Res 2016;27:1283-9. https://doi.org/10.1111/clr.12734
  30. Albrektsson T, Zarb G, Worthington P, Eriksson AR. The long-term efficacy of currently used dental implants: a review and proposed criteria of success. Int J Oral Maxillofac Implants 1986;1:11-25.
  31. Misch CE, Perel ML, Wang HL, Sammartino G, Galindo-Moreno P, Trisi P, Steigmann M, Rebaudi A, Palti A, Pikos MA, Schwartz-Arad D, Choukroun J, Gutierrez-Perez JL, Marenzi G, Valavanis DK. Implant success, survival, and failure: the International Congress of Oral Implantologists (ICOI) Pisa Consensus Conference. Implant Dent 2008;17:5-15. https://doi.org/10.1097/ID.0b013e3181676059
  32. Berglundh T, Persson L, Klinge B. A systematic review of the incidence of biological and technical complications in implant dentistry reported in prospective longitudinal studies of at least 5 years. J Clin Periodontol 2002;29:197-212. https://doi.org/10.1034/j.1600-051X.29.s3.12.x
  33. Renvert S, Persson GR, Pirih FQ, Camargo PM. Peri-implant health, peri-implant mucositis, and peri-implantitis: Case definitions and diagnostic considerations. J Periodontol 2018;89:S304-12. https://doi.org/10.1002/jper.17-0588
  34. Acharya A, Leung MCT, Ng KT, Fan MHM, Fokas G, Mattheos N. Peri-implant marginal bone loss rate preand post-loading: An exploratory analysis of associated factors. Clin Oral Implants Res 2019;30:410-9. https://doi.org/10.1111/clr.366_13509
  35. Roos-Jansaker AM, Lindahl C, Renvert H, Renvert S. Nine- to fourteen-year follow-up of implant treatment. Part II: presence of peri-implant lesions. J Clin Periodontol 2006;33:290-5. https://doi.org/10.1111/j.1600-051X.2006.00906.x
  36. Meloni SM, Jovanovic SA, Lolli FM, Pisano M, De Riu G, De Riu N, Luglie PF, Tullio A. Platform switching vs regular platform implants: nine-month post-loading results from a randomised controlled trial. Eur J Oral Implantol 2014;7:257-65.
  37. Doornewaard R, Jacquet W, Cosyn J, De Bruyn H. How do peri-implant biologic parameters correspond with implant survival and peri-implantitis? A critical review. Clin Oral Implants Res 2018;29:100-23. https://doi.org/10.1111/clr.13264
  38. Bergenblock S, Andersson B, Fürst B, Jemt T. Longterm follow-up of CeraOneTM single-implant restorations: an 18-year follow-up study based on a prospective patient cohort. Clin Implant Dent Relat Res 2012;14:471-9. https://doi.org/10.1111/j.1708-8208.2010.00290.x
  39. Dierens M, Vandeweghe S, Kisch J, Nilner K, De Bruyn H. Long-term follow-up of turned single implants placed in periodontally healthy patients after 16-22 years: radiographic and peri-implant outcome. Clin Oral Implants Res 2012;23:197-204. https://doi.org/10.1111/j.1600-0501.2011.02212.x