• Title/Summary/Keyword: Density design variable

Search Result 127, Processing Time 0.022 seconds

Changes in Mechanical Properties of Wood Due to 1 Year Outdoor Exposure

  • KIM, Gwang-Chul;KIM, Jun-Ho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.12-21
    • /
    • 2020
  • For quantitative evaluation of wooden structures, the mechanical performance of members has undergone outdoor exposure tests. A year-long monitoring was conducted using an SPF species. Test groups were divided into twelve (each month) to measure the moisture content, density and ultimate load. Starting from May when moisture content of the test group was at the lowest, simple failure modes were observed more frequently during the first half of the experiment, whereas complex failure modes took over during the second half. Starting from June when moisture content of the test group was the highest, ultimate load decreased by 30% in the second half compared to the first half. A multiple regression analysis confirmed that moisture content of the test group was the variable with most effect on ultimate load of various outdoor variables, and an estimation equation of a simple regression analysis revealed that moisture content and ultimate load formed an inversely proportionate relationship. It is thought that correlational relationships of variables other than moisture content could be applied with the increase in added data amount by longer periods of outdoor exposure tests.

Nonlocal strain gradient theory for buckling and bending of FG-GRNC laminated sandwich plates

  • Basha, Muhammad;Daikh, Ahmed Amine;Melaibari, Ammar;Wagih, Ahmed;Othman, Ramzi;Almitani, Khalid H;Hamed, Mostafa A.;Abdelrahman, Alaa;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.639-660
    • /
    • 2022
  • The bending and buckling behaviours of FG-GRNC laminated sandwich plates are investigated by using novel five-variables quasi 3D higher order shear deformation plate theory by considering the modified continuum nonlocal strain gradient theory. To calculate the effective Young's modulus of the GRNC sandwich plate along the thickness direction, and Poisson's ratio and mass density, the modified Halpin-Tsai model and the rule of the mixture are employed. Based on a new field of displacement, governing equilibrium equations of the GRNC sandwich plate are solved using a developed approach of Galerkin method. A detailed parametric analysis is carried out to highlight the influences of length scale and material scale parameters, GPLs distribution pattern, the weight fraction of GPLs, geometry and size of GPLs, the geometry of the sandwich plate and the total number of layers on the stresses, deformation and critical buckling loads. Some details are studied exclusively for the first time, such as stresses and the nonlocality effect.

Simulation of Hourly Precipitation using Nonhomogeneous Markov Chain Model and Derivation of Rainfall Mass Curve using Transition Probability (비동질성 Markov 모형에 의한 시간강수량 모의 발생과 천이확률을 이용한 강우의 시간분포 유도)

  • Choi, Byung-Kyu;Oh, Tae-Suk;Park, Rae-Gun;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.3
    • /
    • pp.265-276
    • /
    • 2008
  • The observed data of enough period need for design of hydrological works. But, most hydrological data aren't enough. Therefore in this paper, hourly precipitation generated by nonhomogeneous Markov chain model using variable Kernel density function. First, the Kernel estimator is used to estimate the transition probabilities. Second, wet hours are decided by transition probabilities and random numbers. Third, the amount of precipitation of each hours is calculated by the Kernel density function that estimated from observed data. At the results, observed precipitation data and generated precipitation data have similar statistic. Also, rainfall mass curve is derived by calculated transition probabilities for generation of hourly precipitation.

Modelling of effective irradiation swelling for inert matrix fuels

  • Zhang, Jing;Wang, Haoyu;Wei, Hongyang;Zhang, Jingyu;Tang, Changbing;Lu, Chuan;Huang, Chunlan;Ding, Shurong;Li, Yuanming
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2616-2628
    • /
    • 2021
  • The results of effective irradiation swelling in a wide range of burnup levels are numerically obtained for an inert matrix fuel, which are verified with DART model. The fission gas swelling of fuel particles is calculated with a mechanistic model, which depends on the external hydrostatic pressure. Additionally, irradiation and thermal creep effects are included in the inert matrix. The effects of matrix creep strains, external hydrostatic pressure and temperature on the effective irradiation swelling are investigated. The research results indicate that (1) the above effects are coupled with each other; (2) the matrix creep effects at high temperatures should be involved; and (3) ranged from 0 to 300 MPa, a remarkable dependence of external hydrostatic pressure can be found. Furthermore, an explicit multi-variable mathematic model is established for the effective irradiation swelling, as a function of particle volume fraction, temperature, external hydrostatic pressure and fuel particle fission density, which can well reproduce the finite element results. The mathematic model for the current volume fraction of fuel particles can help establish other effective performance models.

A Case Study on Quantifying Uncertainties of Geotechnical Random Variables (지반 확률변수의 불확실성 정량화에 관한 사례연구)

  • Han, Sang-Hyun;Yea, Geu-Guwen;Kim, Hong-Yeon
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.15-25
    • /
    • 2012
  • Probabilistic design methods have been used as a design standard in Korea and abroad for achieving reasonable design by considering the statistical uncertainties of soil properties. In this study, the following techniques for reflecting geotechnical uncertainty are analyzed: quantification of the uncertainties of geotechnical random variables, and consideration of economic feasibility in design by minimizing the uncertainties related to the number of samples. To quantify the uncertainties, the techniques were applied to soil properties obtained from samples collected and tested in the field. The results showed an underestimation of the standard deviation by the 3-sigma approach in comparison with calculations using data from the samples. This finding indicates that economical design is possible in terms of probability. However, when compared with the Bayesian approach, which does not consider the number of samples, variability in the 3-sigma approach is underestimated for some variables. This finding also indicates a safety issue, whereas the number of samples based on the Bayesian approach showed the lowest variance. The variance of the probability density function showed a marked decrease with increasing number of samples, to converge at a certain level when the number exceeds 25. Of note, the estimation of values is more reliable for random variables having low variability, such as soil unit weight, and can be obtained with a small number of samples.

Evaluation of at Rest Lateral Stress Coefficient Influenced by Particle Condition (입자의 조건에 따른 정지토압계수 평가)

  • Lee, Jung-Hwoon;Lee, Dong-Ryeol;Yun, Tae-Sup;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.8
    • /
    • pp.21-29
    • /
    • 2012
  • At-rest lateral stress coefficient that is used for the evaluation of geotechnical structures such as foundations and retaining walls plays a significant role in the analysis and design, as a state variable of in-situ stress condition. In the widely applied Jaky's Ko equation stress condition can be inferred from the internal friction angle obtainable from the laboratory experimentation whereas the eguation mares it challenging to evaluate the influences and criteria of particle characteristics which is essential for the application of friction angles in practices. Thus, this study experimentally explored the behaviors of Ko depending on the relative density, particle shape, and surface roughness effect during a range of loading stages. The Ko values of Jumumjin sand, glass beads, and etched glass beads were measured using a customized Ko device housing strain gauges during loading-unloading-reloading steps, and the effect of dominant factors on Ko is analyzed. Results show that the high Ko prevails for both round and angular specimens with low relative density and the surface roughness has a nominal effect. The angular particles exhibit low Ko for specimens with similar relative density. The characteristics of relevance between Ko and friction angles with varying relative density are also investigated based on the experimental results using empirical correlations and previously reported values.

Topology Optimization of Structures using Interval Finite Element Method (간격 유한요소해석을 이용한 구조물의 위상 최적화)

  • Lee, Dong-Kyu;Shin, Soo-Mi;Park, Sung-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.4 s.74
    • /
    • pp.389-398
    • /
    • 2006
  • Structural optimization design has been developed with finite element analysis using effective and fast computational technology. Especially topology optimization design has been recently often used since it yields an optimal topology as well as an optimal shape under satisfied constraints. In general in finite element analysis, it is assumed that the structural material properties such as Young's modulus and Poisson's ratio and the variable of applied loading are fixed with obvious values in structure. However practically these values may take uncertainties because of environmental effect or manufactural error of structures. Therefore static or dynamic analysis of the structures may make an error, then finally it may have an influence on qualify of optimal design. In this study, the topology optimization design of structure is carried out using so called the interval finite element method, and the analysis method Is proposed. The results are also validated by comparing with conventional topology optimization results of density distribution method and finite element analysis results. The present method can be used to predict the optimal topology of linear elastostatic structures with respect to structural uncertainty of behavior.

Compressive Deformation Characteristics of Logging Residues by Tree Species (수종별 벌채부산물의 압축 변형 특성)

  • Oh, Jae Heun;Choi, Yun Sung;Kim, Dae Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.2
    • /
    • pp.198-205
    • /
    • 2015
  • The aim of this study was to provide the basic design parameters for developing logging residue compression machines by investigating compressive deformation characteristics of different types of logging residues. To achieve these objectives, Pinus rigida, Pinus koraensis and Quercus mongolica were selected as specimens, and compression-deformation tests by UTM(universial testing machine) were conducted. The experimental dataset were used to set up the model based on the compression-deformation ratio in the form of exponential function. The results showed that stress coefficient in terms of mechanical properties of logging residues was decreased, whereas strain coefficient tended to be increased as the number of compression increased at target density of $350kg/m^3$ and $400kg/m^3$. The model presented that the required stress was decreased as the number of compression increased, and the stress growth rate was swelled compared to the change of the deformation rate. Therefore, it showed that proper initial compression force was a significant variable in order to achieve the target density of logging residue.

Expansion of Sensitivity Analysis for Statistical Moments and Probability Constraints to Non-Normal Variables (비정규 분포에 대한 통계적 모멘트와 확률 제한조건의 민감도 해석)

  • Huh, Jae-Sung;Kwak, Byung-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1691-1696
    • /
    • 2010
  • The efforts of reflecting the system's uncertainties in design step have been made and robust optimization or reliabilitybased design optimization are examples of the most famous methodologies. The statistical moments of a performance function and the constraints corresponding to probability conditions are involved in the formulation of these methodologies. Therefore, it is essential to effectively and accurately calculate them. The sensitivities of these methodologies have to be determined when nonlinear programming is utilized during the optimization process. The sensitivity of statistical moments and probability constraints is expressed in the integral form and limited to the normal random variable; we aim to expand the sensitivity formulation to nonnormal variables. Additional functional calculation will not be required when statistical moments and failure or satisfaction probabilities are already obtained at a design point. On the other hand, the accuracy of the sensitivity results could be worse than that of the moments because the target function is expressed as a product of the performance function and the explicit functions derived from probability density functions.

Chracteristics of Cement Mortar Mixed with Incinerated Urban Solid Waste (도시 쓰레기 소각재를 혼입한 시멘트 모르타르의 특성)

  • Chang, Chun-Ho
    • Journal of Environmental Science International
    • /
    • v.19 no.5
    • /
    • pp.639-646
    • /
    • 2010
  • Differently from fly ash, the bottom ash produced from incinerated urban solid waste has been treated as an industrial waste matter, and almost reclaimed a tract form the sea. If this waste material is applicable to foam concrete as an fine aggregate, however, it may be worthy of environmental preservation by recycling of waste material as well as reducing self-weight of high-rising structure and long-span bridge. This research has an objective of evaluating the effects of application of bottom ash on the mechanical properties of foam concrete. Thus, the ratio of bottom ash to cement was selected as a variable for experiment and the effect was tested by compression strength, flexural strength, absorption ratio, density, expansion factor. It can be observed from experiments that the application ratios have different effects on the material parameters considered in this experiment, thus major relationship between application ratio and each material parameter were finally introduced. The result of this study can be applied to decide a optimal mix design proportion of foam light-weight concrete while bottom ash is used as an fine aggregate of the concrete.