DOI QR코드

DOI QR Code

Modelling of effective irradiation swelling for inert matrix fuels

  • Zhang, Jing (Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics, Fudan University) ;
  • Wang, Haoyu (Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China) ;
  • Wei, Hongyang (Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics, Fudan University) ;
  • Zhang, Jingyu (Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics, Fudan University) ;
  • Tang, Changbing (Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China) ;
  • Lu, Chuan (Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China) ;
  • Huang, Chunlan (Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China) ;
  • Ding, Shurong (Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics, Fudan University) ;
  • Li, Yuanming (Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China)
  • Received : 2020.12.02
  • Accepted : 2021.02.22
  • Published : 2021.08.25

Abstract

The results of effective irradiation swelling in a wide range of burnup levels are numerically obtained for an inert matrix fuel, which are verified with DART model. The fission gas swelling of fuel particles is calculated with a mechanistic model, which depends on the external hydrostatic pressure. Additionally, irradiation and thermal creep effects are included in the inert matrix. The effects of matrix creep strains, external hydrostatic pressure and temperature on the effective irradiation swelling are investigated. The research results indicate that (1) the above effects are coupled with each other; (2) the matrix creep effects at high temperatures should be involved; and (3) ranged from 0 to 300 MPa, a remarkable dependence of external hydrostatic pressure can be found. Furthermore, an explicit multi-variable mathematic model is established for the effective irradiation swelling, as a function of particle volume fraction, temperature, external hydrostatic pressure and fuel particle fission density, which can well reproduce the finite element results. The mathematic model for the current volume fraction of fuel particles can help establish other effective performance models.

Keywords

Acknowledgement

The authors are very grateful for the supports of National Natural Science Foundation of China (No. 11772095), the support of the National Key Research and Development Program of China (2016YFB0700103) and the supports of the foundation from Science and Technology on Reactor System Design Technology Laboratory.

References

  1. A.N. Holden, Dispersion Fuel Elements, Gordon and Breach Science Publishers Inc, New York, 1967.
  2. J.L. Kloosterman, P.M.G. Damen, Reactor physics aspects of plutonium burning in inert matrix fuels, J. Nucl. Mater. 274 (1999) 112-119. https://doi.org/10.1016/S0022-3115(99)00087-2
  3. C. Lombardi, L. Luzzi, E. Padovani, et al., Thoria and inert matrix fuels for a sustainable nuclear power, Prog. Nucl. Energy 50 (8) (2008) 944-953. https://doi.org/10.1016/j.pnucene.2008.03.006
  4. W.J. Carmack, M. Todosow, M.K. Meyer, K.O. Pasamehmetoglu, Inert matrix fuel neutronic, thermal-hydraulic, and transient behavior in a light water reactor, J. Nucl. Mater. 352 (2006) 276-284. https://doi.org/10.1016/j.jnucmat.2006.02.098
  5. Xin Gong, Shurong Ding, Yunmei Zhao, Yongzhong Huo, Lin Zhang, Yuanming Li, Effects of irradiation hardening and creep on the thermomechanical behaviors in inert matrix fuel elements, Mech. Mater. 65 (2013) 110-123. https://doi.org/10.1016/j.mechmat.2013.05.008
  6. L.V. Duyn, Evaluation of the Mechanical Behavior of a Metal Matrix Dispersion Fuel for Plutonium Burning, Georgia Institute of Technology: A thesis for the Degree Master of Science in Mechanical Engineering, 2003.
  7. A. Savchenko, L. Konovalov, A. Vatulin, A. Morozov, V. Orlov, O. Uferov, S. Ershov, A. Laushkin, G. Kulakov, S. Maranchak, Z. Petrova, Dispersion type zirconium matrix fuels fabricated by capillary impregnation method, J. Nucl. Mater. 362 (2-3) (2007) 356-363. https://doi.org/10.1016/j.jnucmat.2007.01.211
  8. A.M. Savchenko, A.V. Vatulin, A.V. Morozov, et al., Inert matrix fuel in dispersion type fuel elements, J. Nucl. Mater. 352 (1-3) (2006) 372-377. https://doi.org/10.1016/j.jnucmat.2006.03.003
  9. E.A.C. Neeft, K. Bakker, R.P.C. Schram, et al., The EFTTRA-T3 irradiation experiment on inert matrix fuels, J. Nucl. Mater. 320 (1-2) (2003) 106-116. https://doi.org/10.1016/S0022-3115(03)00176-4
  10. A.M. Savchenko, I.I. Konovalov, A.V. Vatulin, E.M. Glagovsky, New concept of designing Pu and MA containing fuel for fast reactors, J. Nucl. Mater. 385 (1) (2009) 148-152. https://doi.org/10.1016/j.jnucmat.2008.10.035
  11. A.M. Savchenko, A.V. Vatulin, E.M. Glagovsky, I.I. Konovalov, A.V. Morozov, A.V. Kozlov, S.A. Ershov, V.A. Mishunin, G.V. Kulakov, V.I. Sorokin, A.P. Simonov, Z.N. Petrova, V.V. Fedotov, Main results of the development of dispersion type IMF at A.A. Bochvar Institute, J. Nucl. Mater. 396 (1) (2010) 26-31. https://doi.org/10.1016/j.jnucmat.2009.10.048
  12. M. Suzuki H S, Light water reactor fuel analysis code, 2005. FEMAXI-6 (Ver.1) [Z].
  13. A. MATPRO, Handbook of Materials Properties for Use in the Analysis of Light Water Reactor Fuel Rod Behavior, 1978.
  14. Y.S. Kim, G.Y. Jeong, J.M. Park, A.B. Robinson, Fission induced swelling of UMo/Al dispersion fuel, J. Nucl. Mater. 465 (2015) 142-152. https://doi.org/10.1016/j.jnucmat.2015.06.006
  15. Y.M. Zhao, J.Y. Zhang, S.R. Ding, A new method for solving the fission gas diffusion equations with time varying diffusion coefficient and source term considering recrystallization of fuel grains, Nuclear Materials and Energy 20 (2019) 100686. https://doi.org/10.1016/j.nme.2019.100686
  16. J. Rest, A model for fission-gas-bubble behavior in amorphous uranium silicide compounds, J. Nucl. Mater. 325 (2-3) (2004) 107-117. https://doi.org/10.1016/j.jnucmat.2003.11.008
  17. J. Rest, Application of a mechanistic model for radiation-induced amorphization and crystallization of uranium silicide to recrystallization of UO2, J. Nucl. Mater. 248 (1997) 180-184. https://doi.org/10.1016/S0022-3115(97)00117-7
  18. A. Leenaers, W. Van Renterghem, S. Van den Berghe, High burn-up structure of U(Mo) dispersion fuel, J. Nucl. Mater. 476 (2016) 218-230. https://doi.org/10.1016/j.jnucmat.2016.04.035
  19. Y. Cui, S.R. Ding, Z.T. Chen, Y.Z. Huo, Modifications and applications of the mechanistic gaseous swelling model for UMo fuel[J], J. Nucl. Mater. 457 (2015) 157-164. https://doi.org/10.1016/j.jnucmat.2014.11.065
  20. X. Tian, X.Z. Kong, F. Yan, S.R. Ding, Hydrostatic pressure effect of fission gas swelling in UMo/Al dispersion fuel plate, Atomic Energy Sci. Technol. 51 (11) (2017) 2062-2068.
  21. Y.B. Miao, A. Kyle, David Andersson Gamble, et al., Gaseous swelling of U3Si2 during steady-state LWR operation: a rate theory investigation, Nucl. Eng. Des. 322 (2017) 336-344. https://doi.org/10.1016/j.nucengdes.2017.07.008
  22. M.C. Paraschiv, A. Paraschiv, V.V. Grecu, On the nuclear oxide fuel densification, swelling and thermal re-sintering, J. Nucl. Mater. 302 (2) (2002) 109-124. https://doi.org/10.1016/S0022-3115(02)00797-3
  23. Y.S. Kim, G.L. Hofman, J.S. Cheon, A.B. Robinson, D.M. Wachs, Fission induced swelling and creep of UeMo alloy fuel, J. Nucl. Mater. 437 (1-3) (2013) 37-46. https://doi.org/10.1016/j.jnucmat.2013.01.346
  24. G.Y. Jeong, Y.S. Kim, D. Sohn, Mechanical analysis of UMo/Al dispersion fuel, J. Nucl. Mater. 466 (2015) 509-521. https://doi.org/10.1016/j.jnucmat.2015.07.033
  25. Z.H. Xing, S.H. Ying, Study on the irradiation swelling of U3Si2-Al dispersion fuel, Atomic Energy Sci. Technol. 35 (1) (2001) 15-19. https://doi.org/10.3969/j.issn.1000-6931.2001.01.003
  26. J. Rest, et al., The DART Dispersion Analysis Research Tool: A Mechanistic Model for Predicting Fission-Product-Induced Swelling of Aluminum Dispersion Fuels, Argonne National Laboratory, 1995.
  27. X. Gong, Y.M. Zhao, S.R. Ding, A new method to simulate the micro-thermo-mechanical behaviors evolution in dispersion nuclear fuel elements, Mech. Mater. 77 (2014) 14-27. https://doi.org/10.1016/j.mechmat.2014.06.004
  28. Q.M. Wang, X.Q. Yan, S.R. Ding, Y.Z. HUO, Research on the interfacial behaviors of plate-type dispersion nuclear fuel elements, J. Nucl. Mater. 399 (1) (2010) 41-54. https://doi.org/10.1016/j.jnucmat.2010.01.001
  29. Q.M. Wang, Y. Cui, S.R. Ding, Y.Z. HUO, Simulation of the coupling behaviors of particle and matrix irradiation swelling and cladding irradiation growth of plate-type dispersion nuclear fuel elements, Mech. Mater. 43 (4) (2011) 222-241. https://doi.org/10.1016/j.mechmat.2011.01.004
  30. W. CAI, Y.M. ZHAO, X. GONG, S.R. DING, Y.Z. HUO, Calculation simulation of equivalent irradiation swelling for dispersion nuclear fuel, Atomic Energy Sci. Technol. 49 (3) (2015) 502-510.
  31. Y.M. Zhao, X. Gong, S.R. Ding, Y.Z. Huo, A numerical method for simulating the non-homogeneous irradiation effects in full-sized dispersion nuclear fuel plates, Int. J. Mech. Sci. 81 (2014) 174-183. https://doi.org/10.1016/j.ijmecsci.2014.02.012
  32. M.L. Liu, Y.H. Lee, Dasari V. Rao, Development of effective thermal conductivity model for particle-type nuclear fuels randomly distributed in a matrix, J. Nucl. Mater. 508 (2018) 168-180. https://doi.org/10.1016/j.jnucmat.2018.05.044
  33. Z. Hashin, Analysis of composite materials-a survey, Appl. Mech 50 (1983) 481-505. https://doi.org/10.1115/1.3167081
  34. P S. In Sanchez-Palencia E Z A E. Homogenization Techniques for Composites Media, Springer-Verlag, Berlin, 1987.
  35. J. Rest, DART model for irradiation-induced swelling of uranium silicide dispersion, Fuel Elements 126 (1998) 88-101.
  36. B. Ye, J. Rest, A Description of the Mechanistic DART-THERMAL Dispersion Fuel Performance Code and Application to Irradiation Behavior Analysis of U-Mo/Al, 2013.
  37. Y.M. Zhao, X. Gong, Y. Cui, S.R. Ding, Simulation of the fission-induced swelling and creep in the CERCER fuel pellets, Mater. Des. 89 (2016) 183-195. https://doi.org/10.1016/j.matdes.2015.09.135
  38. J. Rest, A model for the effect of the progression of irradiation-induced recrystallization from initiation to completion on swelling of UO2 and U-10Mo nuclear fuels, J. Nucl. Mater. 346 (2005) 226-232. https://doi.org/10.1016/j.jnucmat.2005.06.012
  39. J. Spino, J. Rest, W. Goll, C.T. Walker, Matrix swelling rate and cavity volume balance of UO2 fuels at high burn-up, J. Nucl. Mater. 346 (2005) 131-144. https://doi.org/10.1016/j.jnucmat.2005.06.015
  40. J.D. Hales, R.L. Williamson, S.R. Novascone, et al., BISON Theory Manual the Equations behind Nuclear Fuel Analysis, Idaho National Laboratory, 2016.
  41. Martin Lemes, Alejandro Soba, Alicia Denis, An empirical formulation to describe the evolution of the high burnup structure, J. Nucl. Mater. 456 (2015) 174-181. https://doi.org/10.1016/j.jnucmat.2014.09.048
  42. J. Spino, A.D. Stalios, H. Santa Cruz, D. Baron, Stereological evolution of the rim structure in PWR-fuels at prolonged irradiation: dependencies with burn-up and temperature, J. Nucl. Mater. 354 (2006) 66-84. https://doi.org/10.1016/j.jnucmat.2006.02.095
  43. J. Noirot, L. Desgranges, J. Lamontagne, Detailed characterisations of high burn-up structures in oxide fuels, J. Nucl. Mater. 372 (2008) 318-339. https://doi.org/10.1016/j.jnucmat.2007.04.037
  44. B. Roostaii, H. Kazeminejad, S. Khakshournia, Influence of porosity formation on irradiated UO2 fuel thermal conductivity at high burnup, J. Nucl. Mater. 479 (2016) 374-381. https://doi.org/10.1016/j.jnucmat.2016.07.005

Cited by

  1. Preliminary analysis on the thermal-mechanical behavior of dispersed plate-type fuel under reactivity insertion accident vol.163, 2021, https://doi.org/10.1016/j.anucene.2021.108509
  2. A new method to simulate dispersion plate-type fuel assembly in a multi-physics coupled way vol.166, 2021, https://doi.org/10.1016/j.anucene.2021.108734