• 제목/요약/키워드: Density current

검색결과 5,717건 처리시간 0.083초

해양환경 하에서 동합금의 캐비테이션-부식손상 방지를 위한 방식정전류 기법 연구 (Investigation on Galvanostatic Method to Protect Cavitation-corrosion Damage for Cu Alloy in Sea Water)

  • 박재철;김성종
    • 한국표면공학회지
    • /
    • 제45권1호
    • /
    • pp.25-30
    • /
    • 2012
  • The galvanostatic tests for corrosion protection are conducted at various applied current densities during 93,600 sec, and evaluated in terms of the variations in current density with time and in the potential at the applied current density. In addition, the corrosion damage depth is analyzed with 3D analysis optical microscope after galvanostatic tests. In this study, it was investigated to decide condition of the corrosion protection gavalnostatic method for Cu-Al alloy that has an excellent corrosion resistance. In the galvanostatic test under the cavitation environment, the energy was reflected or cancelled out by the collision with the oxygen gas generated by the oxygen reduction action. The surface observation showed neither the cavitation damage nor the electrochemical damage in the current density over 0.01 $A/cm^2$ in the dynamic state under the cavitation environment.

알루미늄 도핑된 산화아연 양극을 적용한 고효율 유기발광다이오드 (Efficient Organic Light-emitting Diodes with Aluminum-doped Zinc Oxide Anodes)

  • 이호년;이영구;정종국;이성의;오태식
    • 한국전기전자재료학회논문지
    • /
    • 제20권8호
    • /
    • pp.711-715
    • /
    • 2007
  • Properties of organic light-emitting diodes (OLEDs) with aluminum-doped zinc oxide (ZnO:Al) anodes showed different behaviors from OLEDs with indium tin oxide (ITO) anodes according to driving conditions. OLEDs with ITO anodes gave higher current density and luminance in lower voltage region and better EL and power efficiency under lower current density conditions, However, OLEDs with ZnO:Al anodes gave higher current density and luminance in higher voltage region over about 8V and better EL and power efficiency under higher current density over $200mA/cm^2$. These seemed to be due to the differences in conduction properties of semiconducting ZnO:Al and metallic ITO. OLEDs with ZnO:Al anodes showed nearly saturated efficiency under high current driving conditions compared with those of OLEDs with ITO anodes. This meant better charge balance in OLEDs with ZnO:Al anodes. These properties of OLEDs with ZnO:Al anodes are useful in making bright display devices with efficiency.

Joule열이 Sn-3.5Ag 플립칩 솔더범프의 Electromigration 거동에 미치는 영향 (Effect of Joule Heating on Electromigration Characteristics of Sn-3.5Ag Flip Chip Solder Bump)

  • 이장희;양승택;서민석;정관호;변광유;박영배
    • 한국재료학회지
    • /
    • 제17권2호
    • /
    • pp.91-95
    • /
    • 2007
  • Electromigration characteristics of Sn-3.5Ag flip chip solder bump were analyzed using flip chip packages which consisted of Si chip substrate and electroplated Cu under bump metallurgy. Electromigration test temperatures and current densities peformed were $140{\sim}175^{\circ}C\;and\;6{\sim}9{\times}10^4A/cm^2$ respectively. Mean time to failure of solder bump decreased as the temperature and current density increased. The activation energy and current density exponent were found to be 1.63 eV and 4.6, respectively. The activation energy and current density exponent have very high value because of high Joule heating. Evolution of Cu-Sn intermetallic compound was also investigated with respect to current density conditions.

A Newly Developed Non-Cyanide Electroless Gold Plating Method Using Thiomalic Acid as a Complexing Agent and 2-Aminoethanethiol as a Reducing Agent

  • Han, Jae-Ho;Lee, Jae-Bong;Van Phuong, Nguyen;Kim, Dong-Hyun
    • Corrosion Science and Technology
    • /
    • 제21권2호
    • /
    • pp.89-99
    • /
    • 2022
  • A versatile method for performing non-cyanide electroless gold plating using thiomalic acid (TMA) as a complexing agent and 2-aminoethanethiol (AET) as a reducing agent was investigated. It was found that TMA was an excellent complexing agent for gold. It can be used in electroless gold plating baths at a neutral pH with a high solution stability, makes it a potential candidate to replace conventional toxic cyanide complex. It was found that one gold atomic ion could bind to two TMA molecules to form the [2TMA-Au+] complex in a solution. AET can be used as a reducing agent in electroless gold plating solutions. The highest current density was obtained at electrode rotation rate of 250 to 500 rpm based on anodic and cathodic polarization curves with the mixed potential theory. Increasing AET concentration, pH, and temperature significantly increased the anodic polarization current density and shifted the plating potential toward a more negative value. The optimal gold ion concentration to obtain the highest current density was 0.01 M. The cathodic current was higher at a lower pH and a higher temperature. The current density was inversely proportional to TMA concentration.

Factors Influencing Edge Dendritic Plating of Steel Sheet in the Electro-Galvanizing Line

  • Du-Hwan Jo;Moonjae Kwon;Doojin Paik;Myungsoo Kim
    • Corrosion Science and Technology
    • /
    • 제23권3호
    • /
    • pp.215-220
    • /
    • 2024
  • Recently, the demand for Zn-Ni electrogalvanized steel sheets for home appliances and automobiles is increasing. Products should have a thick plating (30 to 40 g/m2) on both side with a thin thickness (≤ 0.8 mm) and the highest surface quality. By a high current density operation, current is concentrated in the edge part of the steel sheet, resulting in large surface dent defects due to dendritic plating. This can lead to a low productivity due to low line speed operation. To solve this problem, this study aimed to identify factors influencing dendritic plating. A cylindrical electroplating device was manufactured. Effects of cut edge shape and thickness of steel plate, current density, temperature, flow rate, electrolyte concentration, and pH on dendrite generation of Zn-Ni electroplating were examined. To investigate effect of edge shape of the steel sheet, the steel sheet was manufactured using three processing methods: shearing, polishing after shearing, and laser. Relative effects thickness and cut edge processing methods of the steel plate, current density, temperature, flow rate, electrolyte concentration, and pH of plating solution on dendrite plating were investigated. To prevent dendrite plating, an edge mask was manufactured and its application effect was investigated.

전력기기에서 고전류밀도 Bi-2223테이프 (High Current Density Bi-2223 Tapes in Electrotechnical devices)

  • 류경우;최병주;성기철;류강식
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2002년도 학술대회 논문집
    • /
    • pp.43-45
    • /
    • 2002
  • High current density Bi-2223 tapes have recently become commercially available. There are some important characteristics of the tapes, e.g. critical current, ac loss, fault current characteristics, for an application such as a power cable or a power transformer. They have been investigated experimentally and discussed in this paper.

  • PDF

혈액정화장치의 현황과 문제점

  • 박한철
    • 대한의용생체공학회:의공학회지
    • /
    • 제10권2호
    • /
    • pp.102-105
    • /
    • 1989
  • In electrical impedance tomography(EIT), we use boundary current and voltage measurements toprovide the information about the cross-sectional distribution of electrical impedance or resistivity. One of the major problems in EIT has been the inaccessibility of internal voltage or current data in finding the internal impedance values. We propose a new image reconstruction method using internal current density data measured by NMR. We obtained a two-dimensional current density distribution within a phantom by processing the real and imaginary MR images from a 4.77 NMR machine. We implemented a resistivity mage reconstruction algorithm using the finite element method and sensitivity matrix. We presented computer simulation results of the mage reconstruction algorithm and furture direction of the research.

  • PDF

AZX311 마그네슘 합금과 마르텐사이트 강의 V-bending 이후 전류 인가에 따른 스프링백 각도 변화 평가 (Evaluation of Springback Angle Change with Applying Electric Current After V-bending Test on AZX311 Magnesium Alloy and Martensitic Steel)

  • 박주원;정혜진;진성우;김문조;;한흥남
    • 소성∙가공
    • /
    • 제27권3호
    • /
    • pp.177-183
    • /
    • 2018
  • The influence of electric current on the springback characteristics of AZX311 magnesium alloy and martensitic steel after V-bending test is investigated. Various pulsed electric currents are applied into the specimens followed by a V-bending test, and the changes in the springback angle are measured. In order to evaluate not only the thermal effect but also the athermal effect of electric current on the springback angle, the temperature rises resulting from the applied electric current are measured for all test conditions. As a result, it was found that the springback is significantly decreased as the current density increases. As for the martensitic steel, since the dislocation recovery immoderately occurs at a high electric current density condition of $80A/mm^2$, the optimal current density condition should be required.

3차원 유한요소해석을 이용한 종자게형 진공 인터럽터의 특성고찰 (A Study of the Characteristics on the Vacuum Interrupter with Axial Magnetic Field Type using 3 Dimension Finite Element Analysis)

  • 하덕용;강형부
    • 한국전기전자재료학회논문지
    • /
    • 제15권5호
    • /
    • pp.460-467
    • /
    • 2002
  • This paper deals with the distribution characteristics of the current density and axial magnetic flux density on the vacuum interrupter with axial magnetic field type using 3 dimension finite element analysis. An axial magnetic field parallel to the current flow in the arc column can improve the current breaking capacity of vacuum interrupter by affecting the arc mode. The axial magnetic flux density on the contact electrode surface is analyzed by inputting external current as a function of the transient time for sine half wave. And it also is analyzed within the gap distance of the contact electrode. The peak value of current but is decreased with the descending current on the contact electrode surface and within the gap distance of the contact electrode. The residual magnetic field is generated on the contact electrode surface and within the gap distance in the instant of zero current, which is due to the influence of eddy currents. The phase shift due to eddy currents, defined as time difference between the maximum value of current and axial magnetic field, is about 1ms in the center point of gap distance.

산성 전해질 기반의 전기 이중층 커패시터용 흑연 집전체의 전기화학적 안정성 평가 (Evaluation of Electrochemical Stability of Graphite Current Collector for Electric Double Layer Capacitor Based on Acid Electrolyte)

  • 박시진;안건형
    • 한국재료학회지
    • /
    • 제31권5호
    • /
    • pp.272-277
    • /
    • 2021
  • Owing to its low cost, easy fabrication process, and good ionic properties, aqueous supercapacitors are under strong consideration as next-generation energy storage devices. However, the limitation of the current collector is its poor electrochemical stability, leading to low energy storage performance. Therefore, a reasonable design of the current collector and the acidic electrolyte is a necessary, as well as interfacial engineering to enhance the electrochemical performance. In the present study, graphite foil, with excellent electrochemical stability and good electrical properties, is suggested as a current collector of aqueous supercapacitors. This strategy results in excellent electrochemical performance, including a high specific capacitance of 215 F g-1 at a current density of 0.1 A g-1, a superior high-rate performance (104 F g-1 at a current density of 20.0 A g-1), and a remarkable cycling stability of 98 % at a current density of 10.0 A g-1 after 9,000 cycles. The superior energy storage performance is mainly ascribed to the improved ionic diffusion ability during cycling.