DOI QR코드

DOI QR Code

A Newly Developed Non-Cyanide Electroless Gold Plating Method Using Thiomalic Acid as a Complexing Agent and 2-Aminoethanethiol as a Reducing Agent

  • Received : 2022.03.18
  • Accepted : 2022.04.25
  • Published : 2022.05.06

Abstract

A versatile method for performing non-cyanide electroless gold plating using thiomalic acid (TMA) as a complexing agent and 2-aminoethanethiol (AET) as a reducing agent was investigated. It was found that TMA was an excellent complexing agent for gold. It can be used in electroless gold plating baths at a neutral pH with a high solution stability, makes it a potential candidate to replace conventional toxic cyanide complex. It was found that one gold atomic ion could bind to two TMA molecules to form the [2TMA-Au+] complex in a solution. AET can be used as a reducing agent in electroless gold plating solutions. The highest current density was obtained at electrode rotation rate of 250 to 500 rpm based on anodic and cathodic polarization curves with the mixed potential theory. Increasing AET concentration, pH, and temperature significantly increased the anodic polarization current density and shifted the plating potential toward a more negative value. The optimal gold ion concentration to obtain the highest current density was 0.01 M. The cathodic current was higher at a lower pH and a higher temperature. The current density was inversely proportional to TMA concentration.

Keywords

References

  1. M. Kato and Y. Okinaka, Some recent developments in non-cyanide gold plating for electronics applications, Gold Bulletin, 37, 37 (2004). Doi: https://doi.org/10.1007/BF03215515
  2. R. J. Morrissey, A versatile non-cyanide gold plating system, Plating and Surface Finishing, 80, 75 (1993). https://www.nmfrc.org/pdf/10493075.pdf
  3. Y. Okinaka and M. Hoshino, Some Recent Topics in Gold Plating for Electronics Applications, Gold Bulletin, 31, 3 (1998). Doi: http://dx.doi.org/10.1007/BF03215469
  4. T. Osaka, Y.Okinaka, J. Sasano, and M. Kato, Development of new electrolytic and electroless gold plating processes for electronics applications, Science and Technology of Advanced Materials, 7, 425 (2006). Doi: https://doi.org/10.1016/j.stam.2006.05.003
  5. H. O. Ali and I. R. Christie, A review of electroless gold deposition processes, Gold Bulletin, 17, 118 (1984). Doi: https://doi.org/10.1007/BF03214674
  6. M. Huang, X. Li, J. Xia, X. Li, W. Qiu, G. Zhang, R. Sun, and Y. Mu, Proc. 2017 18th International Conference on Electronic Packaging Technology (ICEPT) Conf., pp. 1173 - 1178, IEEE (2017).
  7. H. Honma, Plating technology for electronics packaging, Electrochimica Acta, 47, 75 (2001). Doi: https://doi.org/10.1016/S0013-4686(01)00591-6
  8. F. H. Reid, W. Goldie and E. W. Brooman, Gold Plating Technology, Journal of The Electrochemical Society, 122, 188Ca (1975). Doi: https://doi.org/10.1149/1.2134304
  9. P. Wilkinson, Understanding gold plating, Gold Bulletin, 19, 75 (1986). Doi: https://doi.org/10.1007/BF03214646
  10. Y. Okinaka, Electroless Gold Plating, Journal of The Surface Finishing Society of Japan, 42, 1077 (1991). Doi: https://doi.org/10.4139/sfj.42.1077
  11. K. Wang, R. Beica, and N. Brown, Proc. IEEE/CPMT/SEMI 29th International lectronics Manufacturing Technology Symposium (IEEE Cat. No. 04CH37585), pp. 242-246, IEEE (2004).
  12. Y. Okinaka and M. Kato, Electroless deposition of gold, pp. 483 - 498, Wiley-VCH, Milan (2010).
  13. T. Green, M.-J. Liew, and S. Roy, Electrodeposition of Gold from a Thiosulfate-Sulfite Bath for Microelectronic Applications, Journal of the electrochemical society, 150, C104 (2003). Doi: https://doi.org/10.1149/1.1541006
  14. T. Inoue, S. Ando, H. Okudaira, J. Ushio, A. Tomizawa, H. Takehara, T. Shimazaki, H. Yamamoto, and H.Yokono, Proc. 45th Electronic Components and Technology Conf., pp. 1059 - 1067, IEEE (1995).
  15. Y. Sato, T. Osawa, K. Kaieda, and K. Kobayakawa, Cyanide-free electroless gold plating from a bath containing disulfitoaurate and thiourea or its derivatives, Plating and surface finishing, 81, 74 (1994).
  16. T. Takeuchi, Y. Kohashi, D-H Kim, H. Nawafune, M. Tanikubo, and S. Mizumoto, Electroless Gold Plating Using L-cysteine as Reducing Agent & its Deposition Mechanism, Plating and surface finishing, 90, 56 (2003).
  17. K. Vasilev, T. Zhu, G. Glasser, W. Knoll, and M. Kreiter, Preparation of Gold Nanoparticles in an Aqueous Medium Using 2-Mercaptosuccinic Acid as Both Reduction and Capping Agent, Journal of nanoscience and nanotechnology, 8, 2062 (2008). Doi: https://doi.org/10.1166/jnn.2008.057
  18. A. M. Sullivan and P. A. Kohl, The autocatalytic deposition of gold in nonalkaline, gold thiosulfate electroless bath, Journal of the Electrochemical Society, 142, 2250 (1995). Doi: https://doi.org/10.1149/1.2044282
  19. J. Hu, W. Li, J. Chen, X. Zhang, and X. Zhao, Novel plating solution for electroless deposition of gold film onto glass surface, Surface and Coatings Technology, 202, 2922 (2008). Doi: https://doi.org/10.1016/j.surfcoat.2007.10.026
  20. G. O. Mallory and J. B. Hajdu, Electroless plating: fundamentals and applications, p. 401, William Andrew, Florida (1990).
  21. D. Baudrand and J. Bengston, Electroless plating processes, Metal finishing, 93, 55 (1995). Doi: https://doi.org/10.1016/0026-0576(95)99502-2
  22. C. G. Anderson, Alkaline sulfide gold leaching kinetics, Minerals Engineering, 92, 248 (2016). Doi: https://doi.org/10.1016/j.mineng.2016.01.009
  23. T. Vorobyova, S. Poznyak, A. Rimskaya, and O. Vrublevskaya, Electroless gold plating from a hypophosphite-dicyanoaurate bath, Surface and coatings technology, 176, 327 (2004). Doi: https://doi.org/10.1016/S0257-8972(03)00744-8
  24. M. I. Jeffrey and A. Angstetra, The Effect of Additives on the Electroless Deposition of Gold from a Thiosulfate-Ascorbic Acid Bath, ECS Transactions, 2, 267 (2006). Doi: https://doi.org/10.1149/1.2196016
  25. M. Kato, K. Niikura, S. Hoshino, and I. Ohno, Electrochemical Behavior of Electroless Gold Plating with Ascorbic Acid as a Reducing Agent, Journal of The Surface Finishing Society of Japan, 42, 729 (1991). Doi: https://doi.org/10.4139/sfj.42.729
  26. Y. Okinaka, An Electrochemical Study of Electroless Gold?Deposition Reaction, Journal of the Electrochemical Society, 120, 739 (1973). Doi: https://doi.org/10.1149/1.2403548
  27. G. Corthey, L. J. Giovanetti, J. M. Ramallo-Lopez, E. Zelaya, A. A. Rubert, G. A. Benitez, F. G. Requejo, M. H. Fonticelli, and R. C. Salvarezza, Synthesis and Characterization of Gold@Gold(I)-Thiomalate Core@Shell Nanoparticles, ACS nano, 4, 3413 (2010). Doi: https://doi.org/10.1021/nn100272q
  28. D. J. LeBlanc, R. W. Smith, Z. Wang, H. E. Howard-Lock, and C. J. Lock, Thiomalate complexes of gold(I) : preparation, characterization and crystal structures of 1:2 gold to thiomalate complexes, Journal of the Chemical Society, Dalton Transactions, 18, 3263 (1997). Doi: https://doi.org/10.1039/A700827I
  29. A. Bard, Standard potentials in aqueous solution, p. 313, Routledge, New York (2017). Doi: https://doi.org/10.1201/9780203738764
  30. H.K.Lee, D.H.Kim, D.K. Han, I.J.Son, Practical Surface Treatment Technology Series, Electroless Plating, 3, 44 (2014).
  31. H. Nawafune, K. Shiroguchi, M. Tanikubo, S. Mizumoto, Y. Kohashi, and T. Takeuchi, Autocatalytic Electroless Silver Deposition Using 2-Aminoethanethiol as Reducing Agent, Journal of The Surface Finishing Society of Japan, 50, 928 (1999). Doi: https://doi.org/10.4139/sfj.50.928
  32. I. Ohno, Electrochemistry of electroless plating, Materials Science and Engineering : A, 146, 33 (1991). Doi: https://doi.org/10.1016/0921-5093(91)90266-P
  33. A. J. Bard, G. Inzelt, and F. Scholz, Electrochemical Dictionary, p. 482, Springer Science & Business Media, Berlin (2008). Doi: https://doi.org/10.1007/978-3-540-74598-3
  34. M. L. Goldberger and K. M. Watson, Collision theory, p. 32, Courier Corporation, New York (2004).
  35. W. Riedel, Electroless nickel plating, ASM International (1991).