• Title/Summary/Keyword: Dendrimer

Search Result 152, Processing Time 0.031 seconds

Optical Behavior of Azobenzene Functionalized Dendrimer in Organic Monolayers (아조벤젠이 기능화된 덴드리머 유기단분자막의 광학적 거동)

  • 신훈규;손정호;김병상;권영수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.7
    • /
    • pp.627-633
    • /
    • 2002
  • Many isolated featureless domains were explicitly observed even at the air-water interface. We measured the surface pressure shift originating from the photo-isomerization of azobenzene units on the periphery of dendrimers. The maximum surface pressure was gradual1y increased and saturated by cyclic compression and decompression. By irradiation of 365 [nm] light, the surface pressure was increased, which was originated by the photo-isomerization process of the azobenzene group on the periphery from trans to cia form. The increase of the dipole moment ($\mu$), which may increase the interaction among Azo dendrimer molecules, made an important role on surface pressure shift. From the absorbance spectrum by UV irradiation and heat treatment, we can see that the absorbance in the UV region decreases with the increase of the UV irradiation time, but the peak at 350 m, characteristic of dendrimers in the LB monolayers, was not shifted until four irradiation cycles. This suggests that optical behavior and morphological change are affected by the functional group and the symmetric chain.

A Study on the Physical Properties of Functional LB Monolayers (기능성 LB단분자막의 물성에 관한 연구)

  • Choi, Young-Il;Cho, Su-Young;Kim, Young-Geun;Song, Jin-Won;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.853-856
    • /
    • 2004
  • Monolayers of lipids on a water surface have attracted much interest as models of biological membranes but also as precursors of multilayer systems promising many technical applications. Until now, many methodologies have been developed in order to gain a better understand. Photoisomerization in monolayers of a novel azobenzene compound, azobenzene dendrimer, was investigated for the first time by means of the absorption spectrum and Maxwell displacement current (MDC) technique. Dendrimers are well-defined macromolecules exhibiting a tree-like structure, first derived by the cascade molecule approach. According to the absorption spectrum, trans-to-cis conversion ratio was estimated to the third generation of azobenzene dendrimer deposited onto a glass substrate. Temperature-dependent induced charge with trans-cis isomerization was also measured by means of MDC technique.

  • PDF

Photo Displacement Properties of Nano structure Organic Ultra Thin Films (나노구조 덴드리머의 광변위특성)

  • Song, Jin-Won;Choi, Young-Il;Cho, Su-Young;Kim, Deok-Tae;Lee, Woo-Ki;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11b
    • /
    • pp.23-26
    • /
    • 2004
  • Monolayers of lipids on a water surface have attracted much interest as models of biological membranes, but also as precursors of multilayer systems promising many technical applications. Until now, many methodologies have been developed in order to gain a better understand. Photoisomerization in monolayers of a novel azobenzene compound, azobenzene dendrimer, was investigated for the first time by means of the absorption spectrum and Maxwell displacement current(MDC) technique. Dendrimers are well-defined macromolecules exhibiting a tree-like structure, first derived by the cascade molecule approach According to the absorption spectrum, trans-to-cis conversion ratio was estimated to the third generation of azobenzene dendrimer deposited onto a glass substrate. Temperature-dependent induced charge with trans-cis isomerization was also measured by means of MDC technique.

  • PDF

Porphyrin-Cored Arylether Dendrimers with Vinyl Groups in the Periphery

  • Lim, So-Yeon;Choi, Dae-Ock;Shin, Eun-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.7
    • /
    • pp.1353-1358
    • /
    • 2008
  • Benzyl arylether dendrimers with zinc porphyrin core and terminal vinyl groups have been synthesized and their photophysical properties and the influence of dendritic environments were investigated. Free base porphyrin-cored benzyl arylether dendrimers 1a-1c and 3a-3c, and their zinc derivatives 2a-2c and 4a-4c have been prepared. Absorption spectra are similar for all porphyrin-cored benzyl arylether dendrimers, except that absorption intensity at 280 nm increases in the higher generation of dendrimer. Fluorescence spectra are similar with two bands for all free base porphyrin dendrimers 1a-1c and 3a-3c, although fluorescence intensity ratio of shorter wavelength emission band to longer wavelength band varies with the generation of dendrimer. Emission efficiencies of 1a-1c and 3a-3c are lower than that of TTP. Emission efficiencies of 2a-2c and 4a-4c are higher than that of ZnTTP. Absorption and emission properties of 1a-1c, 2a-2c, 3a-3c, and 4a-4c were affected negligibly with dendritic environments.

Covalent Immobilization of Trypsin on a Novel Aldehyde-Terminated PAMAM Dendrimer

  • Hamidi, Aliasghar;Rashidi, Mohammad R.;Asgari, Davoud;Aghanejad, Ayuob;Davaran, Soodabeh
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2181-2186
    • /
    • 2012
  • Dendrimers are a novel class of nonlinear polymers and due to their extensive applications in different fields, called versatile polymers. Polyamidoamine (PAMAM) dendrimers are one of the most important dendrimers that have many applications in nanobiotechnology and industry. Generally aldehyde terminated dendrimers are prepared by activation of amine terminated dendrimers by glutaraldehyde which has two problems, toxicity and possibility of crosslink formation. In this study, novel aldehyde-terminated PAMAM dendrimer was prepared and used for covalent immobilization of trypsin by the aim of finding a special reagent which can prevent crosslinking and deactivation of the enzyme. For this purpose aminoacetaldehydedimethylacetal (AADA) was used as spacer group between aldehyde-terminated PAMAM and trypsin.The findings of this study showed that immobilization of trypsin not only resulted higher optimal temperature, but also increased the thermal stability of the immobilized enzyme in comparison to the free enzyme.

Electrical and Morphology Properties of Self-Assembled Dendrimer on Au (111) Substrate (Au (111)기판에 자기조립된 덴드리머 분자의 형태와 전기적 특성에 관한 연구)

  • Jung, Kyung-Han;Shin, Hoon-Kyu;Kim, Chung-Kyun;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.120-123
    • /
    • 2003
  • To investigate the characteristics of the single dendrimer molecule, we attempt to measure morphology and electrical properties of the self-assembled dendrimer on Au (111)substrate with SPM(scanning probe microscopy). The same self-assembly procedure was used for two different concentrations, $10{\mu}mol/ml$ and $100{\mu}mol/ml$. The case of lower concentration, we can measure the diameter and the height of the single molecule with the tapping mode AFM image. The imaged single molecules were dome shaped and the average diameter and height were 15.6 nm, 1.2 nm respectively. From these sizes, we can calculate the volume of the single molecule. The volume of the single molecule was estimated about $116nm^3$. However, that of higher concentration, it is difficult to obtain obvious image of the single molecule. To add to, I-V characteristics were investigated using STM, on which the phenomenon of negative differential resistance (NDR)was observed between 0.14 V and 0.24 V reproductively.

  • PDF

Biosensing interfaces based on the dendrimer-underlying layer on gold

  • Yun, Hyeon-Cheol;Kim, Hak-Seong
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.52-55
    • /
    • 2000
  • Structually organized mono- and multilayers were developed on gold for the catalytic and affinity biosensing using hyper-branched dendrimers. For the catalytic biosensing interface, a new approach to construct a multilayered enzyme film on the electrode surface was developed. The film was prepared by layer-by-layer depositions of dendrimers and periodate-oxidized glucose oxidase. The voltammograms obtained from the GOx/dendrimer multilayered electrodes revealed that bioelectrocatalytic response is directly correlated to the number of deposited bilayers. From the analysis of voltammetric and ellipsometric signals, the coverage of active enzyme per layer during the layering steps was estimated, demonstrating the spatially-ordered multilayer formation. As an extension of the study, dendrimers having various degrees of ferrocenyl modification were prepared and used. The resulting electrodes were electrochemically characterized, and the density of ferrocenyl groups, active enzyme coverage, and sensitivity were estimated. For the affinity-sensing surrface, a biosensor system based on avidin-biotin interaction was developed. As the building block of affinity monolayer, G4 dendrimer having partial ferrocenyl-tethered surface groups was prepared and used. And the biotinylated and electroactive dendritic monolayer was used for the affinity-sensing surface interacting with avidin. Electrochemical characterization of the resulting biosensor was conducted using free enzyme in electrolyte in terms of degree of surface coverage with avidin and subsequent surface shielding.

  • PDF

Photo Displacement Properties of Nano structure Organic Ultra Thin Films (나노구조 유기초박막의 광변위특성)

  • Song, Jin-Won;Choi, Young-Il;Cho, Su-Young;Kim, Young-Geun;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.468-471
    • /
    • 2004
  • Monolayers of lipids on a water surface have attracted much interest as models of biological membranes, but also as precursors of multilayer systems premising many technical applications. Until now, many methodologies have been developed in order to gain a better understand. Photoisomerization in monolayers of a novel azobenzene compound, azobenzene dendrimer, was investigated for the first time by means of the absorption spectrum and Maxwell displacement current (MDC) technique. Dendrimers are well-defined macromolecules exhibiting a tree-like structure, first derived by the cascade molecule approach. According to the absorption spectrum, trans-to-cis conversion ratio was estimated to the third generation of azobenzene dendrimer deposited onto a glass substrate. Temperature-dependent induced charge with trans-cis isomerization was also measured by means of MDC technique.

  • PDF

Ink-jet Printing for the Fabrication of a Flexible Electrochromic Device Based on the Water-Soluble Viologen-Functionalized Dendrimer

  • Yekefallah, Vahideh;Soleimani-Gorgani, Atasheh;Rouhani, Shohre;Najafi, Farhood
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.146-158
    • /
    • 2021
  • This paper reports the preparation of an ink-jet printed flexible electrochromic device based on a water-soluble viologen-functionalized dendrimer. Polyamidoamine (PAMAM) dendrimers were modified with different concentrations of 1-1 bis(propylamine)-4,4'-bipyridylium dibromides to obtain solution-processable electrochromic materials (K1/2 and K1). FTIR, NMR, and elemental analyses are used to characterize synthesized viologens. Moreover, their electrochemical properties were investigated using cyclic voltammetry in an electrolyte solution consisting of 0.1 M HCl to find the optimum viologens. The low-cost ink-jet printer was used to print the prepared water-soluble electrochromic inks onto the ITO coated PET substrate to form desired transparent patterns. The electrolyte was applied on the printed electrochromic ink to make a sandwich with another ITO coated PET to prepare the electrochromic devices (ECD). By applying an electrical potential (0 to -2 V), the transparent ECD's color changed from colorless to blue. The color changes for the optimum ECD (K1), which had more viologen units on the dendrimer, was accompanied by an optical contrast of 47% and 311.5 ㎠C-1 coloration efficiency at 600 nm.

Effects of Pd Nanoparticles on Single-Walled Carbon Nanotubes as High-Sensitivity Hydrogen Gas Sensors (덴드리머와 팔라듐 나노입자를 이용한 단일벽 탄소나노튜브 고성능수소센서)

  • Lee, Jun Min;Ju, Seonghwa;Joe, Jin Hyoun;Kim, Sung-Jin;Lee, Wooyoung
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.4
    • /
    • pp.342-346
    • /
    • 2010
  • Pd nanoparticles (NPs) were successfully functionalizedon the surfaces of single-walled carbon nanotubes (SWNTs) by dendrimer-mediated synthesis. The hydrogen sensing properties of the Pd NPs functionalized SWNTs were investigated. Pd NPs-dendrimer-SWNTs sensors show much better speedsand superior recovery rates but lower sensitivity compared to Pd NPs-functionalized SWNTs directly fabricated due to the existence of dendrimers. Pyrolysis of the dendrimers by heat treatment resulted in a fast response time and high sensitivity owing to the reduced length of the dendrimers. These results demonstrate that the heat treatment of dendrimers in Pd NPs-dendrimer-SWNTs sensors can enable significant electrical conductance modulation upon exposure to extremely low concentrations (10 ppm) of hydrogen gas ($H_2$) in air.