Browse > Article
http://dx.doi.org/10.33961/jecst.2020.00878

Ink-jet Printing for the Fabrication of a Flexible Electrochromic Device Based on the Water-Soluble Viologen-Functionalized Dendrimer  

Yekefallah, Vahideh (Department of Printing Science and Technology, Institute for Color Science and Technology)
Soleimani-Gorgani, Atasheh (Department of Printing Science and Technology, Institute for Color Science and Technology)
Rouhani, Shohre (Department of Organic Colorants, Institute for Color Science and Technology)
Najafi, Farhood (Department of Resin and Additives, Institute for Color Science and Technology)
Publication Information
Journal of Electrochemical Science and Technology / v.12, no.1, 2021 , pp. 146-158 More about this Journal
Abstract
This paper reports the preparation of an ink-jet printed flexible electrochromic device based on a water-soluble viologen-functionalized dendrimer. Polyamidoamine (PAMAM) dendrimers were modified with different concentrations of 1-1 bis(propylamine)-4,4'-bipyridylium dibromides to obtain solution-processable electrochromic materials (K1/2 and K1). FTIR, NMR, and elemental analyses are used to characterize synthesized viologens. Moreover, their electrochemical properties were investigated using cyclic voltammetry in an electrolyte solution consisting of 0.1 M HCl to find the optimum viologens. The low-cost ink-jet printer was used to print the prepared water-soluble electrochromic inks onto the ITO coated PET substrate to form desired transparent patterns. The electrolyte was applied on the printed electrochromic ink to make a sandwich with another ITO coated PET to prepare the electrochromic devices (ECD). By applying an electrical potential (0 to -2 V), the transparent ECD's color changed from colorless to blue. The color changes for the optimum ECD (K1), which had more viologen units on the dendrimer, was accompanied by an optical contrast of 47% and 311.5 ㎠C-1 coloration efficiency at 600 nm.
Keywords
Viologen; Electrochemistry; Ink-jet printing; Flexible polymers; Dendrimers;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Factor, G. Heinsohn, J Polym Sci B: Polym Lett, 1971, 9(4), 289-295.   DOI
2 M. Li, Y. Wei, J. Zheng, D. Zhu, C. Xu, Org. Electron., 2014, 15(2), 428-434.   DOI
3 S.H. Kim, N. Shim, H. Lee, B. Moon, J. Mater. Chem., 2012, 22(27), 13558-13563.   DOI
4 R. Sydam, M. Deepa, A.G. Joshi, Org. Electron, 2013, 14(4), 1027-1036.   DOI
5 P.R. Somani, S. Radhakrishnan, Mater. Chem. Phys., 2003, 77(1), 117-133.   DOI
6 H.V. Dam, J. Ponjee, J . Electrochem. Soc., 1974, 121(12),1555-1558.   DOI
7 P. Bhattacharya, A Novel Series of Viologen-Containing Dendrimers. 2008.
8 C.J. Hawker, F. Chu, P.J. Pomery, D.J.T. Hill, Macromolecules,. 1996, 29(11), 3831-3838.   DOI
9 M. Aleksandrova, J. Phys.: Conf. Ser., 2014, 559(1), 012003.   DOI
10 K. Kaneda, S. Suzuki, Jpn. J. Appl. Phys., 1991, 30(8R), 1841.   DOI
11 K.X. Steirer, M.O. Reese, B.L. Rupert, N. Kopidakis, D.C. Olson, R.T. Collins, D.S. Ginley, Sol. Energy Mater. Sol. Cells., 2009, 93(4), 47-453.
12 S.M. Wang, L. Liu, W.L. Chen, Z.M. Zhang, Z.M. Sua, E.B. Wang, J. Mater. Chem A., 2013, 1(2), 216-220.   DOI
13 T. Maruyama, S. Arai, Sol. Energy Mater. Sol. Cells., 1993, 30(3), 257-262.   DOI
14 G. Cai, J. Wang, P.S. Lee, Acc. Chem. Res., 2016. 49(8),1469-1476.   DOI
15 F.C. Krebs, Sol. Energy Mater. Sol. Cells., 2009, 93(4), 394-412.   DOI
16 R. Esfand, D. Tomalia, Laboratory synthesis of poly (amidoamine)(PAMAM) dendrimers. Dendrimers and other dendritic polymers. 2001.
17 A.H. Holm, R. Moller K.H Vase, M. Dong, K.Norrman, F. Besenbacher, S.U. Pedersen, K. Daasbjerg, New J Chem., 2005, 29(5), 659-666.   DOI
18 E. Fortunato, Dual-phase inkjet printed electrochromic layers based on PTA and WOX/TiO2 nanoparticles for electrochromic applications. 2010.
19 K. Wadhwa, S. Nuryyeva, A.C. Fahrenbach, M Elhabiri, C. Platas-Iglesias, A. Trabolsi, J. Mater. Chem C., 2013, 1(12), 2302-2307.   DOI
20 P. Bhattacharya, A.E. Kaifer, J. Org. Chem., 2008, 73(15), 5693-5698.   DOI
21 H.R. Kang, J. Imaging Sci., 1991, 35(3), 179-188.
22 R.J. Mortimer, T.S. Varley, Sol. Energy Mater. Sol. Cells., 2012, 99, 213-220.   DOI
23 D. Li, A. Neumann, J. Colloid Interface Sci., 1990, 137(1), 304-307.   DOI
24 H.F. George, F. Qureshi, Newton's Law of Viscosity, Newtonian and Non-Newtonian Fluids, in Encyclopedia of Tribology. 2013.
25 H.J. Byker, U.S. Pat. No. 5,294, 376A. 1994.
26 S. Li, Y. Wang, J.G Wu, L. Guo, M. Ye, Y.H. Shao, R. Wang, C. Zhao, A. Wei, RSC Adv, 2016, 6(76), 72037-72043.   DOI
27 R. J. Mortimer, A.L. Dyer, J.R. Reynolds, Displays, 2006, 27(1), 2-18.   DOI
28 C. Bird, A. Kuhn, Chem. Soc. Rev., 1981, 10(1), 49-82.   DOI
29 J. Ding, C. Zheng, L. Wang, C. Lu, B. Zhang, Y. Chen, X. Zhuang, J. Mater. Chem. A., 2019, 7(41), 23337-23360.   DOI
30 K.W. Shah, S.X. Wang, D.X.Y. Soo, J. Xu, Polymers, 2019, 11(11),1839.   DOI
31 R. Papadakis, Molecules, 2019, 25(1), 1.   DOI
32 X. Sun, J. Wang, Nano Lett, 2008, 8(7), 1884-1889.   DOI
33 J.H. Ryu, M.S. Park, K.D. Suh, Colloid Polym. Sci., 2007, 285(15),1675-1681.   DOI
34 L. Cen, K. Neoh, E.T. Kang, Adv. Mater, 2005, 17(13), 1656-1661.   DOI
35 D. Corr, U. Bach, D. Fay, M.Kinsella, C. McAtamney, F. O'Reilly, S.N. Rao, N. Stobie, Solid State Ion., 2003, 165(1), 315-321.   DOI
36 J. Liu, Dyes Pigm, 2018, 154, 92-99.   DOI
37 Y. Rong, S. Kim, F. Su, D. Myers, M. Taya, Electrochim. Acta., 2011, 56(17), 6230-6236.   DOI
38 J.T. Sampanthar, K.G. Neoh, S.W. Ng, E.T. Kang, K.L. Tan, Adv. Mater., 2000, 12(20), 1536-1539.   DOI
39 T. Sakano, F. Ito, T. Ono, O. Hirata, M. Ozawa, T. Nagamura, Thin Solid Films, 2010, 519(4), 1458-1463.   DOI
40 T.M. Benedetti, T. Carvalho, D.C. Iwakura, F. Braga, B.R. Vieira, P. Vidinha, J. Gruber, R.M. Torresi, Sol. Energy Mater. Sol. Cells., 2015, 132, 101-106.   DOI
41 P.M. Monk, C. Turner, S.P. Akhtar, Electrochim. Acta., 1999, 44(26), 4817-4826.   DOI
42 S.Y. Choi, M. Mamak, N. Coombs, N. Chopra, A.O. Geoffrey, Nano Lett, 2004, 4(7), 1231-1235.   DOI
43 R.J. Mortimer, T.S. Varley, Chem. Mater., 2011, 23(17), 4077-4082.   DOI
44 H.J. Byker, U.S. Pat. No. 5,336,448. 1994.
45 Z. Qian, X. Huang, Q. Wang, Dyes Pigm, 2017, 145, 365-370.   DOI
46 J. Liu, Dyes Pigm, 2019, 163, 496-501.   DOI
47 S.G. Bertolotti, J.J. Cosa, H.E. Gsponer, M. Hamity, C. M. Previtali, Can. J. Chem., 1986, 64(5), 845-848.   DOI
48 G.C. Granqvist, Handbook of inorganic electrochromic materials. 1995.
49 P.M.S. Monk, R.J. Mortimer, D.R. Rosseinsky, Electrochromism: fundamentals and applications. 1995.
50 S. Nachimuthu, W.R. Shie, D.J. Liaw, R.V. Romashko, J.C. Jiang, J. Phys. Chem. B., 2019, 123(22), 4735-4744.   DOI
51 L.C. Cao, M. Mou, Y. Wang, J. Mater. Chem., 2009, 19(21), 3412-3418.   DOI
52 K. Takada, D.J. Diaz, H. D. Abruna, I. Cuadrado, C. Casado, B. Alonso, M. Moran, J.Losada, J. Am. Chem. Soc., 1997, 119(44), 10763-10773.   DOI
53 W.S. Baker, B.I. Lemon, R.M. Crooks, J. Phys. Chem. B., 2001, 105(37), 8885-8894.   DOI
54 S. Araki, K. Nakamura, K. Kobayashi, A. Tsuboi, N. Kobayashi, Adv. Mater,. 2012, 24(23), OP122-OP126.
55 E. Hwang, S. Seo, S. Bak, H. Lee, M. Min, H. Lee, Adv. Mater., 2014, 26(30), 5129-5136.   DOI
56 V. Jain, M. Khiterer, R. Montazami, H.M. Yochum, K.J. Shea, J.R. H, ACS Appl. Mater. Interfaces., 2009, 1(1), 83-89.   DOI
57 C.W. Hu, K.M. Lee, K.C. Chen, L.C. Chang, K.Y. Shen, S.-C. Lai, T.-H. Kuo, C.-Y. Hsu, L.M. Huang, R. Vittal, K.C. Ho, Sol. Energy Mater. Sol. Cells., 2012, 99,35-140.
58 G.Wang, X. Fu, J. Huang, C. Wu, L.Wu, Q. Du, Org. Electron, 2011, 12(7), 1216-1222.   DOI
59 P. Monk, The Viologens: Synthesis, Physicochemical Properties and Applications of the Salts of 4, 4'-Bipyridine. 1998.