DOI QR코드

DOI QR Code

덴드리머와 팔라듐 나노입자를 이용한 단일벽 탄소나노튜브 고성능수소센서

Effects of Pd Nanoparticles on Single-Walled Carbon Nanotubes as High-Sensitivity Hydrogen Gas Sensors

  • 이준민 (연세대학교 신소재 공학과) ;
  • 주성화 (이화여자대학교 화학나노과학과) ;
  • 조진현 (연세대학교 신소재 공학과) ;
  • 김성진 (이화여자대학교 화학나노과학과) ;
  • 이우영 (연세대학교 신소재 공학과)
  • Lee, Jun Min (Deartment of Materials Science and Engineering, Yonsei University) ;
  • Ju, Seonghwa (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Joe, Jin Hyoun (Deartment of Materials Science and Engineering, Yonsei University) ;
  • Kim, Sung-Jin (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Lee, Wooyoung (Deartment of Materials Science and Engineering, Yonsei University)
  • 투고 : 2009.10.27
  • 발행 : 2010.04.15

초록

Pd nanoparticles (NPs) were successfully functionalizedon the surfaces of single-walled carbon nanotubes (SWNTs) by dendrimer-mediated synthesis. The hydrogen sensing properties of the Pd NPs functionalized SWNTs were investigated. Pd NPs-dendrimer-SWNTs sensors show much better speedsand superior recovery rates but lower sensitivity compared to Pd NPs-functionalized SWNTs directly fabricated due to the existence of dendrimers. Pyrolysis of the dendrimers by heat treatment resulted in a fast response time and high sensitivity owing to the reduced length of the dendrimers. These results demonstrate that the heat treatment of dendrimers in Pd NPs-dendrimer-SWNTs sensors can enable significant electrical conductance modulation upon exposure to extremely low concentrations (10 ppm) of hydrogen gas ($H_2$) in air.

키워드

과제정보

연구 과제 주관 기관 : 국방과학연구소, 한국연구재단, 과학재단, 서울시

참고문헌

  1. M. Z. Jacobson, W. G. Colella, and D. M. Golden, Science 308, 1901 (2005) https://doi.org/10.1126/science.1109157
  2. K.J. Liekus et al. J. Loss. Prevo Process Ind. 13, 377 (2000) https://doi.org/10.1016/S0950-4230(99)00034-0
  3. J. Zhao, A. Buldum, J. Han, and J. Ping Lu, Nanotechnology 13, 195 (2002) https://doi.org/10.1088/0957-4484/13/2/312
  4. M. J. Kim and J. B. Yoo, Electron. Mater. Lett. 4, 47(2008)
  5. J. Kong, M. G. Chapline, and H. Dai, Adv. Mater. 13, 1384 (2001) https://doi.org/10.1002/1521-4095(200109)13:18<1384::AID-ADMA1384>3.0.CO;2-8
  6. J. S. Oakley, H. TWang, B. S. Kang, Z. Wu, F. Ren, A. G. Rinzler, and S. J. Pearton, Nanotechnology 16, 2218 (2005) https://doi.org/10.1088/0957-4484/16/10/040
  7. Y Sun, H. H Wang, and M. Xia, J. Phys. Chem. C 112, 1250 (2008) https://doi.org/10.1021/jp076965n
  8. J. Suehiro, G. Zhou, and M. Hara, J. Phys. D: Appl. Phys. 36, L109 (2003) https://doi.org/10.1088/0022-3727/36/21/L01
  9. J. Suehiro, S. J. Hidaka, S. Yamane, and K. Imasaka, Sensors and Actuators B. 127, 505 (2007) https://doi.org/10.1016/j.snb.2007.05.002
  10. Y Sun and H. H. Wang, Appl. Phys. 90, 213107 (2007)
  11. U. Schlecht, K. Balasubramanian, M. Burghard, and K. Kern, Applied Surface Science 253, 8394 (2007) https://doi.org/10.1016/j.apsusc.2007.04.004
  12. S. Wong, E. Jose1evich, A. Woolley, C. Cheung, and C. Lieber, Nature 394, 52 (1998) https://doi.org/10.1038/27873
  13. K. Balasubramanian, M. Friederich, C. Jiang, Y Fan, A. Mews, M. Burghard, and K. Kern, Adv. Mater. 15, 1515 (2003) https://doi.org/10.1002/adma.200305129
  14. I. Sayago, E. Terrado, M. Aleixandre, M. C. Horrillo, M. J. Fernandez, J. Lozano, E. Lafuente, W. K. Maser, A. M. Benito, M. T Martinez, J. Guti$\'{e}$rrez, and E. Munoz, Sensors and Actuators B. 122, 75 (2007) https://doi.org/10.1016/j.snb.2006.05.005
  15. Y. Sun and H. Hau Wang, Adv. Mater. 19, 2818 (2007) https://doi.org/10.1002/adma.200602975
  16. H. Shin-Ichiro, Y Shinji, J. Kiminobu, and S. Junya, Proc Sens Symp Sens Micromachines Appl Syst. 23, 135 (2006)
  17. M. K. Kumar, A. Leela Mohana Reddy, and S. Ramaprabhu, Sensors and Actuators B. 130, 653 (2008) https://doi.org/10.1016/j.snb.2007.10.033
  18. N. Krasteva, I. Besnard, B. Guse, R. E. Bauer, K. Mulllen, A. Yasuda, and T Vossmeyer, Nano Letter 2, 551 (2002) https://doi.org/10.1021/nl020242s
  19. D. A. Tomalia, H. Baker, J. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder, and P. Smith, Polymer Journal. 17, 117 (1985) https://doi.org/10.1295/polymj.17.117
  20. M. Krishna Kumar and S. Ramaprabhu, International Journal of Hydrogen Energy 32, 2518 (2007) https://doi.org/10.1016/j.ijhydene.2006.11.015
  21. N. Satoh, J. S. Cho, M. Higuchi, and K. Yamamoto, JACS 125, 8104 (2003) https://doi.org/10.1021/ja034811p
  22. E. Lee, J. M. Lee, K. J. Jeon, and W. Lee, J. Kor. Inst. Met. & Mater. 47, 372 (2009)
  23. K. J. Jeon, M. H. Jeun, E. Lee, J. M. Lee, K. J. Lee, P. V. Allmen, and W. Lee, Nanotechnology 19, 495501 (2008) https://doi.org/10.1088/0957-4484/19/49/495501
  24. R. Schlapak, D. Armitage, N. S. Zeni, G. Latini, H. J. Gruber, P. Mesquida, Y Samotskaya, M. Hohage, F. Cacialli, and S. Howorka, Langmuir 23, 8916 (2007) https://doi.org/10.1021/la700476w
  25. G. L. Gaines, Interscience Publisher, New York (1966)