• 제목/요약/키워드: Delay time accurate

검색결과 219건 처리시간 0.025초

Control of Robot Manipulators Using Time-Delay Estimation and Fuzzy Logic Systems

  • Bae, Hyo-Jeong;Jin, Maolin;Suh, Jinho;Lee, Jun Young;Chang, Pyung-Hun;Ahn, Doo-sung
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.1271-1279
    • /
    • 2017
  • A highly accurate model-free controller is proposed for trajectory tracking control of robot manipulators. The proposed controller incorporates time-delay estimation (TDE) to estimate and cancel continuous nonlinearities of robot dynamics, and exploits fuzzy logic systems to suppress the effect of the TDE error, which is due to discontinuous nonlinearities such as friction. To this end, integral sliding mode is defined using desired error dynamics, and a Mamdani-type fuzzy inference system is constructed. As a result, the proposed controller achieves the desired error dynamics well. Implementation of the proposed controller is easy because the design of the controller is intuitive and straightforward, and calculations of the complex robot dynamics are not required. The tracking performance of the proposed controller is verified experimentally using a 3-degree of freedom PUMA-type robot manipulator.

산(Acid)류의 자연발화온도와 방화지연시간의 관계 (Relationship between Autoigniton Temperature(AIT) and Ignition Delay Time for Acids)

  • 하동명
    • 한국화재소방학회논문지
    • /
    • 제18권2호
    • /
    • pp.27-33
    • /
    • 2004
  • 화학물질의 최소자연발화온도의 정확한 지식은 산업화재를 예방하고 제어하는데 중요하다. 최소자연발화온도(AIT)는 화염이나, 스파크 없이 주위로부터 충분한 에너지를 받아서 스스로 점화할 수 있는 최저온도를 말한다. AIT는 실험 개시온도, 압력, 농도, 용기의 크기, 양론혼합비, 촉매, 증기의 농도, 발화지연시간 등 많은 인자에 영향을 받는다. 본 연구에서는 1994년에 제작된 ASTM E659-78 장치를 이용하여 산류(Acids) 발화지연시간과 AIT관계를 측정하였고, 실험에서 얻은 자료는 본 연구에서 제시한 예측 모델과 적은 오차 범위에서 일치하였다.

Measurement Scheme for One-Way Delay Variation with Detection and Removal of Clock Skew

  • Aoki, Makoto;Oki, Eiji;Rojas-Cessa, Roberto
    • ETRI Journal
    • /
    • 제32권6호
    • /
    • pp.854-862
    • /
    • 2010
  • One-way delay variation (OWDV) has become increasingly of interest to researchers as a way to evaluate network state and service quality, especially for real-time and streaming services such as voice-over-Internet-protocol (VoIP) and video. Many schemes for OWDV measurement require clock synchronization through the global-positioning system (GPS) or network time protocol. In clock-synchronized approaches, the accuracy of OWDV measurement depends on the accuracy of the clock synchronization. GPS provides highly accurate clock synchronization. However, the deployment of GPS on legacy network equipment might be slow and costly. This paper proposes a method for measuring OWDV that dispenses with clock synchronization. The clock synchronization problem is mainly caused by clock skew. The proposed approach is based on the measurement of inter-packet delay and accumulated OWDV. This paper shows the performance of the proposed scheme via simulations and through experiments in a VoIP network. The presented simulation and measurement results indicate that clock skew can be efficiently measured and removed and that OWDV can be measured without requiring clock synchronization.

가연성물질의 자연발화온도 측정 및 예측 - 메탄올과 에탄올 - (Measurement and Prediction of Autoignition Temperature(AIT) of Flammable Substances - Methanol and Ethanol -)

  • 하동명
    • 한국안전학회지
    • /
    • 제19권2호
    • /
    • pp.54-60
    • /
    • 2004
  • Flammable substances are frequently used chemical industry processes. An accurate knowledge of the ALTs(Autoignition Temperatures) is important in developing appropriate prevention and control measures in industrial fire protection. The AITs describe the minimum temperature to which a substance must be heated, without the application of a flame or spark, which will cause that substance to ignite. The AITs are dependent upon many factors, namely initial temperature, pressure, volume, fuel/air stoichiometry, catalyst material, concentration of vapor, ignition delay. This study measured relationship between the AITs and the ignition delay times by using ASTM E659-78 apparatus for methanol and ethanol. The A.A.P.E.(Average Absolute Percent Error) and the A.A.D.(Average Absolute Deviation) of the experimental and the calculated delay times by the AITs for methanol were 14.59 and 1.76 respectively. Also the A.A.P.E. and the A.A.D. of the experimental and the calculated delay times by the ATIs for ethanol were 8.33 and 0.88.

Analysis of Row and Column Lines in TFT-LCD panels with a Distributed Electrical Model

  • Park, Hyun-Woo;Kim, Soo-Hwan;Kim, Gyoung-Bum;Hwang, Sung-Woo;Kim, Su-Ki;McCartney, Richard I.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.882-886
    • /
    • 2005
  • As the TFT-LCD panels become larger and provide higher resolution, the distributed capacitive and resistive lines induce the propagation delay, reduce the TFT-on time and deteriorate the pixel chargingratio. A number of the compensation methods, like the H-LDC (Horizontal Line Delay Compensation), have been proposed to compensate the propagation delay of the large and high resolution panels [1]. These methods, however, require the comparatively accurate gate propagation delay estimates at each column driver. In this paper, by observing the actual gate and data waveform from 15-inch XGA TFT-LCD panels, we could predict the propagation delay along the row and column line.

  • PDF

광신호 에너지 최적화를 위한 IIR 격자형 광파이버필터 설계 (Optical IIR lattice fiber filter design for optimum of optical signal energy)

  • 이채욱;김신환
    • 전자공학회논문지B
    • /
    • 제32B권11호
    • /
    • pp.1481-1488
    • /
    • 1995
  • Due to the low loss, broadband and accurate short time delay properties of optical fiber, it has attracted as a delay medium for high speed and broad-band signal processing. In this paper, we consider the coherent optical fiber filter of IIR lattice structure, which uses coherent light sources and consists of directional couplers whose coupling coefficients are restricted between 0 and 1. Considering restrictions of directional coupler, the design formulae and condition for realibility of optical fiber filter of IIR lattice structure which makes the optimal use of optical signal energy are derived.

  • PDF

개선된 타이밍 수준 게이트 지연 계산 알고리즘 (An Improved Timing-level Gate-delay Calculation Algorithm)

  • 김부성;김석윤
    • 전자공학회논문지C
    • /
    • 제36C권8호
    • /
    • pp.1-9
    • /
    • 1999
  • 빠르고 정확한 결과를 얻기 위해서 타이밍 수준에서의 회로 해석이 이루어지며, 게이트와 연결선에서의 신호 지연 해석은 회로의 설계 검증을 위하여 필수적이다. 본 논문에서는 CMOS 회로 게이트에서의 지연 시간과 연결선의 지연 해석을 위한 초기 천이 시간을 동시에 계산할 수 있는 방법을 제시한다. 회로 연결선의 유효 커패시턴스 개념을 이용하여 게이트의 지연 시간과 게이트에서의 구동 저항을 고려한 연결선 선형 전압원의 천이 시간을 계산한다. 게이트 지연과 연결선 선형 전압원의 천이 시간을 구하는 과정은 예비 특성화된 게이트 타이밍 데이터를 이용하여 반복적인 연산과정을 통하여 동시에 구하게 된다. 기존의 게이트 지연 계산 알고리즘은 연결선 선형 전압원의 천이 시간을 위해 별도의 게이트 특성 데이터를 필요로 하였으나, 본 논문에서 제시하는 방법은 계산 과정 중에 생성된 데이터를 이용함으로써 현재의 예비 특성화 방법을 수정하지 않고서도 효율적인 타이밍 수준의 게이트 및 연결선 지연 시간 예측이 가능하도록 하였다.

  • PDF

A New Technique for Solving Optimal Control Problems of the Time-delayed Systems

  • Ghomanjani, Fateme
    • Kyungpook Mathematical Journal
    • /
    • 제58권2호
    • /
    • pp.333-346
    • /
    • 2018
  • An approximation scheme utilizing Bezier curves is considered for solving time-delayed optimal control problems with terminal inequality constraints. First, the problem is transformed, using a $P{\acute{a}}de$ approximation, to one without a time-delayed argument. Terminal inequality constraints, if they exist, are converted to equality constraints. A computational method based on Bezier curves in the time domain is then proposed for solving the obtained non-delay optimal control problem. Numerical examples are introduced to verify the efficiency and accuracy of the proposed technique. The findings demonstrate that the proposed method is accurate and easy to implement.

UNIFORMLY CONVERGENT NUMERICAL SCHEME FOR A SINGULARLY PERTURBED DIFFERENTIAL-DIFFERENCE EQUATIONS ARISING IN COMPUTATIONAL NEUROSCIENCE

  • DABA, IMIRU TAKELE;DURESSA, GEMECHIS FILE
    • Journal of applied mathematics & informatics
    • /
    • 제39권5_6호
    • /
    • pp.655-676
    • /
    • 2021
  • A parameter uniform numerical scheme is proposed for solving singularly perturbed parabolic partial differential-difference convection-diffusion equations with a small delay and advance parameters in reaction terms and spatial variable. Taylor's series expansion is applied to approximate problems with the delay and advance terms. The resulting singularly perturbed parabolic convection-diffusion equation is solved by utilizing the implicit Euler method for the temporal discretization and finite difference method for the spatial discretization on a uniform mesh. The proposed numerical scheme is shown to be an ε-uniformly convergent accurate of the first order in time and second-order in space directions. The efficiency of the scheme is proved by some numerical experiments and by comparing the results with other results. It has been found that the proposed numerical scheme gives a more accurate approximate solution than some available numerical methods in the literature.

Compensation techniques for experimental errors in real-time hybrid simulation using shake tables

  • Nakata, Narutoshi;Stehman, Matthew
    • Smart Structures and Systems
    • /
    • 제14권6호
    • /
    • pp.1055-1079
    • /
    • 2014
  • Substructure shake table testing is a class of real-time hybrid simulation (RTHS). It combines shake table tests of substructures with real-time computational simulation of the remaining part of the structure to assess dynamic response of the entire structure. Unlike in the conventional hybrid simulation, substructure shake table testing imposes acceleration compatibilities at substructure boundaries. However, acceleration tracking of shake tables is extremely challenging, and it is not possible to produce perfect acceleration tracking without time delay. If responses of the experimental substructure have high correlation with ground accelerations, response errors are inevitably induced by the erroneous input acceleration. Feeding the erroneous responses into the RTHS procedure will deteriorate the simulation results. This study presents a set of techniques to enable reliable substructure shake table testing. The developed techniques include compensation techniques for errors induced by imperfect input acceleration of shake tables, model-based actuator delay compensation with state observer, and force correction to eliminate process and measurement noises. These techniques are experimentally investigated through RTHS using a uni-axial shake table and three-story steel frame structure at the Johns Hopkins University. The simulation results showed that substructure shake table testing with the developed compensation techniques provides an accurate and reliable means to simulate the dynamic responses of the entire structure under earthquake excitations.