Relationship between Autoigniton Temperature(AIT) and Ignition Delay Time for Acids

산(Acid)류의 자연발화온도와 방화지연시간의 관계

  • 하동명 (세명대학교 안전공학과)
  • Published : 2004.06.01

Abstract

An accurate knowledge of the AIT(Autoignition temperatures) of chemicals is important in developing appropriate prevention and control measures in industrial fire protection. The AITs describe the minimum temperature to which a substance must be heated, without the application of a flame or spark, which will cause that substance to ignite. The measurement AITs are dependent upon many factors. namely initial temperature. pressure, volume, fuel/air stoichiometry. catalyst material, concentration of vapor, ignition delay time. This study measured the AITs of acids from ignition delay time by using ASTM E659-78 apparatus which was produced in the year 1994. The experiment AITs were a good agreement with the calculated AITs by the proposed equations with a few A.A.P.E.(average absolute percent error) and A.A.D.(average absolute deviation).

화학물질의 최소자연발화온도의 정확한 지식은 산업화재를 예방하고 제어하는데 중요하다. 최소자연발화온도(AIT)는 화염이나, 스파크 없이 주위로부터 충분한 에너지를 받아서 스스로 점화할 수 있는 최저온도를 말한다. AIT는 실험 개시온도, 압력, 농도, 용기의 크기, 양론혼합비, 촉매, 증기의 농도, 발화지연시간 등 많은 인자에 영향을 받는다. 본 연구에서는 1994년에 제작된 ASTM E659-78 장치를 이용하여 산류(Acids) 발화지연시간과 AIT관계를 측정하였고, 실험에서 얻은 자료는 본 연구에서 제시한 예측 모델과 적은 오차 범위에서 일치하였다.

Keywords

References

  1. S. K. Lee and D. M. Ha, 'Newest Chemical Engineering Safety Engineering', Donghwagisul Press, Seoul (1997)
  2. M. G. Zabetakis, A. L. Furno, and G. W. Jones, 'Minimum Spontaneous Ignition Temperature of Combustibles in Air', Industrial and Engineering Chemistry, Vol. 46, No. 10, pp.2173-2178(1954) https://doi.org/10.1021/ie50538a047
  3. W. A. Affens, J. E. Johnson, and H. W. Carhart, 'Effect of Chemical Structure on Spontaneous Ignition of Hydrocarbon', J. of Chemical Engineering Data, Vol. 6, No. 4, pp.613-619(1961) https://doi.org/10.1021/je60011a041
  4. C. J. Hilado and S. W. Clark, 'Autoignition Temperature of Organic Chemicals', Chemical Engineering, Vol. 4, pp.75-80(1972)
  5. S. Yagyu, 'Systematization of Spontaneous Ignition Temperature of Organic Compounds-Spontaneous Ignition Temperature of Alkyl Alcohols-', Research Report of the Research Institute of Industrial Safety (RIIS-RR-26-5), Japan(1978)
  6. L. M. Egolf and P. C, Jurs, 'Estimation of Autoignition Temperature of Hydrocarbons, Alcohols and Ester from Molecular Structure', Ind. Eng. Chern. Res., Vol. 31, pp.1798-1807(1992) https://doi.org/10.1021/ie00007a027
  7. T. Suzuki, 'Quantitative Structure-Property Relationships for Auto-ignition Temperature of Organic Compounds', Fire and Materials, Vol. 18, pp.81-88(1994) https://doi.org/10.1002/fam.810180204
  8. D. King, R. K. Eckhoff, and F. Alfert, 'Auto-ignition of CH4/air, C3H8/air, CH4/C3H8/air and CH4/CO2/air Using 1L Ignition Bomb', J. of Hazardous Materials, Vol. 40, pp.68-84(1995)
  9. K. C. Symth and N. P. Bryner, 'Short-Duration Autoignition Temperature Measurement for Hydrocarbon Fuels Near Heated Metal Surfaces', Combustion Sci. and Tech., Vol. 126, pp.225-253(1997) https://doi.org/10.1080/00102209708935675
  10. M. M. Welzel, S. Schenk, M. Hau, H. K. Cammenga, and H. Bothe, 'Ignition of Combustible/Air Mixtures by Small Radiatively Heated Surfaces', J. of Hazardous Materials, Vol. A 72, pp.1-9(2000)
  11. D. M. Ha et al., 'Measurement of Autoignition Temperature for Ethanol', Proceeding of 2003 KlChE Fall Meeting, p.233(2003)
  12. F-Y. Hshieh, D. B. Hirsh, and J. H. Willams, 'Autoignition Temperature of Trichlorosilanes', Fire and Materials, Vol. 26, pp.289-290(2002) https://doi.org/10.1002/fam.804
  13. ASTM, 'ASTM E659-78, Standard Test Method for Autoignition Temperature of Liquid Chemicals', American Society for Testing Materials, Philadelpia, PA(1994)
  14. D. Drysdale, 'An Introduction to Fire Dynamics', 2nd ed., Jone Wiley1 & Sons, 1998
  15. I. Goldfrab and A. Zinoviev, 'A Study of Delay Spontaneous Insulation Fires', Physics Letter, A 311, pp.491-500(2003)
  16. J. M. Kuchta, A. Bartkowiak, and M. G. Zabetakis, 'Hot Surface Ignition Temperatures of Hydrocarbon Fuel Vapor-Air Mixtures', Vol. 10, No. 3, pp.282-288(1965)
  17. NFPA, 'Fire Hazard Properties of Flammable Liquid, Gases, and Volatile Solids', NFPA 325M, NFPA(1991)
  18. A. M. Kanury, 'SFPE Handbook of Fire Protection Engineering : Ignition of Liquid Fuels', 2nd Ed., SFPE(1995)
  19. R. E. Lenga and K. L. Votoupal, 'The Sigma Aldrich Library of Regulatory and Safety Data, Volume I-III, Sigma Chemical Company and Aldrich Chemical Company Inc. (1993)
  20. J. L. Jackson, 'Spontaneous Ignition Temperature - Commercial Fluids and Pure Hydrocarbons-', Industrial and Engineering Chemistry, Vol. 43, No. 12, pp.2869-2870(1951) https://doi.org/10.1021/ie50504a058
  21. G. E. P. Box and N. R. Draper, 'Empirical ModelBuilding and Response Surface', John-Wiley & Sons, Inc.(1987)
  22. D. G. Kleinbaum, L. L Kupper, and K.E. Muller, 'Applied Regression Analysis and Other Multivariable Methods', 2nd ed., PWS-KENT Publishing Company, Boston(1988)
  23. D. M. Ha and S. J. Lee, 'Prediction of the Net of Combustion of Organic Halogenated Compounds based on the Atomic Contribution Method', T. of Korean Institute of Fire Sci. & Eng., Vol. 17, No.4, pp.7-12(2003)
  24. G. S. Scott, G. W. Jones, and F. E. Scott, 'Determination of Ignition Temperature of Combustible Liquids and Gases', Analytical Chemistry, Vol. 20, No. 3, pp.238-241(1948) https://doi.org/10.1021/ac60015a015