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Abstract. An approximation scheme utilizing Bezier curves is considered for solving

time-delayed optimal control problems with terminal inequality constraints. First, the

problem is transformed, using a Páde approximation, to one without a time-delayed argu-

ment. Terminal inequality constraints, if they exist, are converted to equality constraints.

A computational method based on Bezier curves in the time domain is then proposed

for solving the obtained non-delay optimal control problem. Numerical examples are in-

troduced to verify the efficiency and accuracy of the proposed technique. The findings

demonstrate that the proposed method is accurate and easy to implement.

1. Introduction

The control of systems with time delay has been of considerable concern. Delays
occur frequently in biological, chemical, electronic and transportation systems. Wu,
et al. [14] built up a computational method for solving an optimal control problem
which is represented by a switched dynamical system with time delay. Kharatishidi
[7] has approached this problem by extending Pontryagin’s maximum principle to
time delay systems. The actual solution involves a two-point boundary-value prob-
lem in which advances and delays are exhibited. In addition, this solution does not
yield a feedback controller. Time-optimal control of delay systems has been consid-
ered by Oguztoreli [11] who obtained several results concerning bang-bang controls
which parallel those of LaSalle [9] for non delay systems. For a time-invariant sys-
tem with an infinite upper limit in the performance measure, Krasovskii [8] has
developed the forms of the controller and the performance measure. Ross [12] has
acquired a set of differential equations for the unknowns in the forms of Krasovskii.
However, Ross’s results are not applicable to time-varying systems with a finite
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limit in the performance measure. In [1], the authors presented an optimal regular
for a linear system with multiple state and input delays and a quadratic criterion.
The optimal regulator equations were obtained reducing the original problem to the
linear-quadratic regulator design for a system without delays (see [3] and [4]).
B-splines (where Bezier form is a special case of B-splines), due to numerical stability
and arbitrary order of accuracy, have become popular tools for solving differential
equations. The use of Bezier curves for solving time-delayed optimal control sys-
tems with Páde approximation is a novel idea. The stated technique reduces the
CPU time and the computer memory comparing with existing methods such as
methods in [2, 10] and at the same time keeps the solution accuracy. Although the
stated technique is very easy to utilize and straightforward, the obtained results
are satisfactory (see numerical results). In this paper, one may utilize the Bezier
polynomials. There are many papers and books deal with the Bezier curves or
surface techniques [6]. The organization of this study is arranged as follows: In
Section 2, problem transformation is presented. Section 3 is referred to the Bezier
curve technique. Some Numerical examples are provided in Section 4. Section 5 is
devoted the conclusion.

2. Problem Transformation

Consider the time-delayed optimal control problem

min
u,π

J = η(xtf , π) +

∫ tf

0

L(x(t), x(t− σ), u(t), π, t) dt(2.1)

ẋ(t) = f(x(t), x(t− σ), u(t), π, t),(2.2)

x(t) = ξ(t), − σ ≤ t ≤ 0,(2.3)

η(xf , π) ≥ 0(2.4)

where x ∈ Rn, u ∈ Rm and π ∈ Rp are the state, control and unknown parameter
vectors respectively, η ∈ Rq represents the terminal inequality constraints, tf is end
time, and σ is the delay time associated with the state vector x. For the sake of sim-
plicity, our discussion will be confined to the case of a single time delay σ. However,
all the results can be extended in a straightforward manner to the case of multiple
time delays. The time-delayed optimal control problem (2.1) can be transformed to
one without a time-delayed argument utilizing the following approximation scheme.
Let X(s) be a two-sided Laplace transform of x(t) (see [10]):

x(t)⇔ X(s)
∆
=

∫ +∞

−∞
e−stx(t)dt(2.5)

Presently, X(s) is defined over the strip of convergence α < Re(s) < β, where Re(s)
denotes the real part of s, and ′ ⇔′ denotes a two-sided Laplace transformation.
The two-sided Laplace transform is utilized because x(t) = ξ(t) 6= 0 for t ≤ 0.
Given that x(t)⇔ X(s), the two-sided Laplace transforms of x(t− σ) and ẋ(t) are
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presented by

x(t− σ)⇔ e−σsX(s), α < Re(s) < β,(2.6)

ẋ(t)⇔ sX(s), α1 < Re(s) < β1,(2.7)

where the strip of convergence after the differentiation is assumed to exist and might
or might not be the same as that for X(s). To omit variables with a time-delayed

argument in (2.1), let us define y(t)
∆
= x(t − σ) and y(t) ⇔ Y (s). The two-sided

Laplace transforms Y (s) and X(s) are referred by (see (2.6))

Y (s) = e−σsX(s).(2.8)

Utilizing a first-order Páde approximation, one may have

Y (s)
.
=

2
σ − s
2
σ + 2

X(s),(2.9)

(
2

σ
+ s)Y (s)

.
= (

2

σ
− s)X(s).(2.10)

If an inverse Laplace transformation was performed on the last equation, one may
have (see (2.2) and (2.7))

ẏ(t)
.
=

2

σ
[x(t)− y(t)]− ẋ(t)(2.11)

.
=

2

σ
[x(t)− y(t)]− f(x(t), y(t), u(t), π, t)(2.12)

The time-delayed optimal control problem is approximately changed to one of min-
imizing J(x(t), y(t), u(t), π, t) subject to

ẋ(t) = f(x(t), y(t), u(t), π, t)(2.13)

ẏ(t)
.
=

2

σ
[x(t)− y(t)]− f(x(t), y(t), u(t), π, t)(2.14)

with the following conditions

x(0) = ξ(0), y(0) = ξ(−σ)(2.15)

and the terminal condition η(xf , π) ≥ 0. An alternative approximation scheme (but
equivalent) is to state Y (s) in (2.9) as follows:

Y (s)
.
= (−1 +

4
σ

2
σ + s

)X(s)
.
= −X(s) +Q(s)(2.16)

where Q(s) is defined as

Q(s) =
4
σ

2
σ + s

X(s)(2.17)
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The inverse Laplace transforms of (2.16) and (2.17) are

x(t− σ) = y(t) = −x(t) + q(t)(2.18)

q̇(t) = − 2

σ
q(t) +

4

σ
x(t)(2.19)

Utilizing this technique, the original optimization problem is transformed to one of
minimizing J(x(t), q(t), u(t), π, t) subject to

ẋ(t) = f(x(t), q(t), u(t), π, t)(2.20)

q̇(t) = − 2

σ
q(t) +

4

σ
x(t)(2.21)

with the following conditions

x(0) = ξ(0), q(0) = ξ(0) + ξ(−σ)(2.22)

and the terminal condition η(xf , π) ≥ 0.
To enhance the accuracy of the above-described approximation schemes, the time
delay σ can be subdivided into smaller sections. For example, one may define

y(t)
∆
= x(t− σ

2
)(2.23)

z(t)
∆
= y(t− σ

2
) = x(t− σ)(2.24)

Again, utilizing a first-order Páde approximation, one may obtain

ẏ(t)
.
=

4

σ
[x(t)− y(t)]− f(x(t), z(t), u(t), π, t)(2.25)

ż(t)
.
=

4

σ
[2y(t)− z(t)− x(t)] + f(x(t), z(t), u(t), π, t)(2.26)

The time-delayed problem is changed to one of minimizing J(x(t), z(t), u(t), π, t)
subject to

ẋ(t)
.
= f(x(t), q(t), u(t), π, t)(2.27)

ẏ(t)
.
=

4

σ
[x(t)− y(t)]− f(x(t), z(t), u(t), π, t)(2.28)

ż(t)
.
=

4

σ
[2y(t)− z(t)− x(t)] + f(x(t), z(t), u(t), π, t)(2.29)

with the initial conditions

x(0) = ξ(0), y(0) = ξ(−σ
2

), z(0) = ξ(−σ)(2.30)

and the final condition (2.4). Repeated applications of this method will result
progressively improved achievement. However, this is at the expense of an increase
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in the system order, resulting in an increase in the computation time.

3. Bezier Curve Method

Our strategy is utilizing Bezier curves to approximate the solutions xi(t) and
u(t) where xi(t) are given below. Define the Bezier polynomials of degree n for
t ∈ [t0, tf ] as follows:

xi(t) '
n∑
r=0

airBr,n(
t− t0
h

),(3.1)

u(t) '
n∑
r=0

brBr,n(
t− t0
h

)(3.2)

where h = tf − t0, and

Br,n(
t− t0
h

) =

(
n

r

)
1

hn
(tf − t)n−r(t− t0)r,

is the Bernstein polynomial of degree n for t ∈ [t0, tf ], air and br are the control
points. By substituting xi(t) and u(t) in (2.27)-(2.30), one may define the problem
which can be solved by Maple 16.

Ghomanjani et al. [6] proved the convergence of this method where n → ∞
when the optimal control system solved by Bezier curve method (for more explana-
tion, see [5]). For the convergence of the time-delayed optimal control problem, one
may use Páde approximation, then the problem is converted to an optimal control
problem (OCP), where the convergence of OCP is in [6].
Termination criterions are ‖xi(t)− xi,exact(t)‖∞ < ε, and ‖u(t)− uexact(t)‖ < ε

4. Numerical Application

In this section, some numerical examples are presented for illustrating the pro-
posed technique.

Example 4.1. Consider the following time-delay system:

min J = 5(x1(2))2 +
1

2

∫ 2

0

u2(t) dt

ẋ1(t) = x2(t), 0 ≤ t ≤ 2

ẋ2(t) = −x1(t)− x2(t− 1) + u(t), 0 ≤ t ≤ 2

x1(t) = 10, x0(t) = 0, − 1 ≤ t ≤ 0,(4.1)

For this example the exact solution is given by [10] as follows:

u(t) =

{
δ sin(2− t) + ( δ2 )(1− t) sin(t− 1) 0 ≤ t ≤ 1

δ sin(2− t) 1 ≤ t ≤ 2
(4.2)
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where δ = 2.5599. Utilizing the proposed method, one may have

x3(t)
∆
= x2(t− 1

2
)(4.3)

x4(t)
∆
= x3(t− 1

2
) = x2(t− 1)(4.4)

The delayed differential equations (4.1) then become

ẋ1(t) = x2(t)

ẋ2(t) = −x1(t)− x4(t) + u(t)

ẋ3(t) = x1(t) + 4x2(t)− 4x3(t) + x4(t)− u(t)

ẋ4(t) = −x1(t)− 4x2(t) + 8x3(t)− 5x4(t) + u(t)

x1(0) = 10, x2(0) = 0, x3(0) = 0, x4(0) = 0,

by using this method, we have

x1(t) = (1− (
1

2
)t)2a10 + t(1− (

1

2
)t)a11,

x2(t) = (1− (
1

2
)t)2a20 + t(1− (

1

2
)t)a21,

x3(t) = (1− (
1

2
)t)2a30 + t(1− (

1

2
)t)a31,

x4(t) = (1− (
1

2
)t)2a40 + t(1− (

1

2
)t)a41,

u(t) = (1− (
1

2
)t)2b0 + t(1− (

1

2
)t)b1.

The optimal value of J in proposed method is 3.04246518971317. This value com-
pares well with that given in [10] (J = 3.256613). In proposed method, one may
obtain

x1(t) = 10(1− (
1

2
)t)2 + 4.84426425991426t(1− (

1

2
)t),

x2(t) = − 7.57786787004287t(1− (
1

2
)t)2 − 1.21106606497857t2,

x3(t) = 8.74933030407381t(1− (
1

2
)t)− 1.39164977425000t2,

x4(t) = 0.674964953083765t(1− (
1

2
)t)− 0.683400902532152t2,

u(t) = (1− (
1

2
)t)2(2.5599 sin(2)− 1.279950000 sin(1))

+ 3.68282830005636t(1− (
1

2
)t),

the graphs of approximated and exact solution u(t) and xi(t) for i = 1, 2, 3, 4 are
respectively plotted in Figs. 1, 2, 3, 4 and 5.
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Figure 1: The graphs of approximated and exact solution u(t) for Example
4.1

Figure 2: The graphs of approximated solution x1(t) for Example 4.1
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Figure 3: The graphs of approximated solution x2(t) for Example 4.1

Figure 4: The graphs of approximated solution x3(t) for Example 4.1
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Figure 5: The graphs of approximated solution x4(t) for Example 4.1

Example 4.2. Consider the following time-delay system (see [10]):

min J =
1

2
((x1(2))2 + (x1(2))2) +

1

2

∫ 2

0

u2(t) dt

ẋ1(t) = x2(t), 0 ≤ t ≤ 2

ẋ2(t) = −x2(t)− x1(t− 1) + u(t), 0 ≤ t ≤ 2

x1(t) = 1, x2(t) = 0, − 1 ≤ t ≤ 0,

where the exact solution is

u(t) =

{
(µ+ δ)et−2 + (2µ− 3δ − (µ− δ)t)et−1 + δ(t+ 2)− µ, 0 ≤ t ≤ 1

(µ− δ)et−2 + δ, 1 ≤ t ≤ 2

µ ≈ 0.5226194, δ ≈ −0.5259256.

Utilizing this method, one may achieve

x3(t)
∆
= x1(t− 1

2
),

x4(t)
∆
= x3(t− 1

2
) = x1(t− 1),

presently, one may have

ẋ1(t) = x2(t),

ẋ2(t) = −x2(t)− x4(t) + u(t),

ẋ3(t) = 4x1(t) + x2(t)− 3x3(t)− u(t),

ẋ4(t) = 8x3(t)− 5x4(t)− x2(t)− 4x1(t) + u(t),

x1(0) = 1, x2(0) = 0, x3(0) = 1, x4(0) = 1,
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The optimal value of J in proposed method is 0.0671730978076868. This value
compares well with that given in [10] (J = 0.1967). The graphs of approximated
and exact solution u(t) are plotted in Fig. 6.

Figure 6: The graphs of approximated and exact solution u(t) for Example
4.2

Example 4.3. Consider the following time-delay system (see [10]):

min J =
1

2
x1(2))2 +

1

2

∫ 2

0

x2
1(t) + u2(t) dt

ẋ1(t) = x1(t)sin(x1) + x1(t− 1) + u(t), 0 ≤ t ≤ 2

x1(t) = 10, − 1 ≤ t ≤ 0,

now, one may have

x2(t)
∆
= x1(t− 1

2
),

x3(t)
∆
= x2(t− 1

2
) = x1(t− 1),

utilizing this method, one may achieve

ẋ1(t) = x1(t)sin(x1) + x3(t) + u(t),

ẋ2(t) = 4x1(t)− 4x2(t)− x3(t)− x1sin(x1)− u(t),

ẋ3(t) = 8x2(t)− 3x3(t)− 4x1(t) + x1sin(x1) + u(t),

x1(0) = 10, x2(0) = 10, x3(0) = 10,(4.5)
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Figure 7: The graph of approximated solution u(t) for Example 4.3

Figure 8: The graph of approximated solution x1(t) for Example 4.3

using Bezier curve, one may have

x1,bezier = (1− 1

2
t)2p1[0] + t(1− 1

2
t)p1[1] +

1

4
t2p1[2],

x2,bezier = (1− 1

2
t)2p2[0] + t(1− 1

2
t)p2[1] +

1

4
t2p2[2],

x3,bezier = (1− 1

2
t)2p3[0] + t(1− 1

2
t)p3[1] +

1

4
t2p3[2],

ubezier = (1− 1

2
t)2q[0] + t(1− 1

2
t)q[1] +

1

4
t2q[2],(4.6)
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then one may substitute (4.6) in (4.5), and solve this system by using Maple 16
software. The optimal value of J in proposed method is 161.712666656000, when
the values of J in [10], Banks [2], and Wong et al. [13] are respectively J = 161.88,
J = 162.019, and J = 162.104. The graphs of approximated solution u(t) and x1(t)
are plotted in Figs. 7 and 8.

Figure 9: The graph of approximated solution u(t) for Example 4.4

Figure 10: The graph of approximated solution x1(t) for Example 4.4
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Example 4.4. Consider the following time-delay system (see [10]):

min J =
1

2
105 × x1(2))2 +

1

2

∫ 2

0

u2(t) dt

ẋ1(t) = x1(t− 1) + u(t), 0 ≤ t ≤ 2

x1(t) = 1, − 1 ≤ t ≤ 0,

now, one may have

x2(t)
∆
= x1(t− 1

2
),

x3(t)
∆
= x2(t− 1

2
) = x1(t− 1),

hence

ẋ1(t) = x3(t) + u(t),

ẋ2(t) = 4x1(t)− 4x2(t)− x3(t)− u(t),

ẋ3(t) = 8x2(t)− 3x3(t)− 4x1(t) + u(t),

x1(0) = 1, x2(0) = 1, x3(0) = 1,(4.7)

using Bezier curve, one may have

x1,bezier = (1− 1

2
t)3p1[0] +

3

2
t(1− 1

2
t)2p1[1] +

3

4
t2(1− 1

2
t)p1[2] +

1

8
t3p1[3],

x2,bezier = (1− 1

2
t)3p2[0] +

3

2
t(1− 1

2
t)2p2[1] +

3

4
t2(1− 1

2
t)p2[2] +

1

8
t3p2[3],

x3,bezier = (1− 1

2
t)3p3[0] +

3

2
t(1− 1

2
t)2p3[1] +

3

4
t2(1− 1

2
t)p3[2] +

1

8
t3p3[3],

ubezier = (1− 1

2
t)3q[0] +

3

2
t(1− 1

2
t)2q[1] +

3

4
t2(1− 1

2
t)q[2] +

1

8
t3q[3],(4.8)

then one may substitute (4.8) in (4.7), and solve this system by using Maple 16
software. The optimal value of J in proposed method is 1.43068782747222, when
the value of J in [10] is J = 1.849730. The graphs of approximated solution u(t)
and x1(t) are plotted in Figs. 9 and 10.

5. Conclusions

Time-delayed optimal control problems with terminal inequality constraints can
be approximately solved by a combined parameter. To this end, a Páde approxi-
mation is utilized to acquire a corresponding problem without a time-delayed ar-
gument. The results obtained by the Bezier curve are in good agreement with the
given exact solutions. The study shows that the method is effective technique to
solve time-delayed optimal control problems, and the technique is easy to imple-
ment and computationally very attractive without sacrificing the accuracy of the
solution.
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