• Title/Summary/Keyword: Delay differential equations

Search Result 90, Processing Time 0.025 seconds

Cn-PSEUDO ALMOST AUTOMORPHIC SOLUTIONS OF CLASS r IN THE 𝛼-NORM UNDER THE LIGHT OF MEASURE THEORY

  • DJENDODE MBAINADJI
    • Journal of Applied and Pure Mathematics
    • /
    • v.6 no.1_2
    • /
    • pp.71-96
    • /
    • 2024
  • In this paper we present many interesting results such as completeness and composition theorems in the 𝛼 norm. Moreover, under some conditions, we establish the existence and uniqueness of Cn-(𝜇, 𝜈) pseudo-almost automorphic solutions of class r in the 𝛼-norm for some partial functional differential equations in Banach space when the delay is distributed. An example is given to illustrate our results.

OPTIMIZATION OF PARAMETERS IN MATHEMATICAL MODELS OF BIOLOGICAL SYSTEMS

  • Choo, S.M.;Kim, Y.H.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.355-364
    • /
    • 2008
  • Under pathological stress stimuli, dynamics of a biological system can be changed by alteration of several components such as functional proteins, ultimately leading to disease state. These dynamics in disease state can be modeled using differential equations in which kinetic or system parameters can be obtained from experimental data. One of the most effective ways to restore a particular disease state of biology system (i.e., cell, organ and organism) into the normal state makes optimization of the altered components usually represented by system parameters in the differential equations. There has been no such approach as far as we know. Here we show this approach with a cardiac hypertrophy model in which we obtain the existence of the optimal parameters and construct an optimal system which can be used to find the optimal parameters.

  • PDF

Analysis of the hematopoiesis process in mammalian bone using homotopy perturbation method

  • Akano, Theddeus T.;Nwoye, Ephraim O.;Adeyemi, Segun
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.5 no.1
    • /
    • pp.51-64
    • /
    • 2020
  • In this study, the mathematical model that describes blood cell development in the bone marrow (i.e., hematopoiesis) has been studied via the Homotopy Perturbation Method (HPM). The results from the present work compared very well with the numerical solutions from published literature. This work has shown that the HPM is viable for solving delay differential equations born from hematopoiesis problem. The influence of the proliferating cells loss rate, time delay rate and the phase re-entry rate on the population densities of both the proliferating and resting cells were also determined through the underlined procedure.

MAX-MIN CONTROLLABILITY OF DELAY-DIFFERENTIAL GAMES IN HILBERT SPACES

  • Kang, Yong-Han;Jeong, Jin-Mun;Park, Jong-Yeoul
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.177-191
    • /
    • 2001
  • We consider a linear differential game described by the delay-differential equation in a Hilbert space H; (※Equations, See Full-text) U and V are Hilbert spaces, and B(t) and C(t) are families of bounded operators on U and V to H, respectively. A(sub)0 generates an analytic semigroup T(t) = e(sup)tA(sub)0 in H. The control variables g, and u and v are supposed to be restricted in the norm bounded sets (※Equations, See Full-text). For given x(sup)0 ∈ H and a given time t > 0, we study $\xi$-approximate controllability to determine x($.$) for a given g and v($.$) such that the corresponding solution x(t) satisfies ∥x(t) - x(sup)0∥ $\leq$ $\xi$($\xi$ > 0 : a given error).

  • PDF

PERIODICITY AND POSITIVITY IN NEUTRAL NONLINEAR LEVIN-NOHEL INTEGRO-DIFFERENTIAL EQUATIONS

  • Bessioud, Karima;Ardjouni, Abdelouaheb;Djoudi, Ahcene
    • Honam Mathematical Journal
    • /
    • v.42 no.4
    • /
    • pp.667-680
    • /
    • 2020
  • Our paper deals with the following neutral nonlinear Levin-Nohel integro-differential with variable delay $${\frac{d}{dt}x(t)}+{\normalsize\displaystyle\smashmargin{2}{\int\nolimits_{t-r(t)}}^t}a(t,s)x(s)ds+{\frac{d}{dt}}g(t,x(t-{\tau}(t)))=0.$$ By using Krasnoselskii's fixed point theorem we obtain the existence of periodic and positive periodic solutions and by contraction mapping principle we obtain the existence of a unique periodic solution. An example is given to illustrate this work.

A FIFTH ORDER NUMERICAL METHOD FOR SINGULARLY PERTURBED DIFFERENTIAL-DIFFERENCE EQUATIONS WITH NEGATIVE SHIFT

  • Chakravarthy, P. Pramod;Phaneendra, K.;Reddy, Y.N.
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.441-452
    • /
    • 2009
  • In this paper, a fifth order numerical method is presented for solving singularly perturbed differential-difference equations with negative shift. In recent papers the term negative shift has been using for delay. Similar boundary value problems are associated with expected first exit time problem of the membrane, potential in models for neuron and in variational problems in control theory. In the numerical treatment for such type of boundary value problems, first we use Taylor approximation to tackle terms containing small shifts which converts it to a boundary value problem for singularly perturbed differential equation. The two point boundary value problem is transformed into general first order ordinary differential equation system. A discrete approximation of a fifth order compact difference scheme is presented for the first order system and is solved using the boundary conditions. Several numerical examples are solved and compared with exact solution. It is observed that present method approximates the exact solution very well.

  • PDF

FITTED MESH METHOD FOR SINGULARLY PERTURBED DELAY DIFFERENTIAL TURNING POINT PROBLEMS EXHIBITING TWIN BOUNDARY LAYERS

  • MELESSE, WONDWOSEN GEBEYAW;TIRUNEH, AWOKE ANDARGIE;DERESE, GETACHEW ADAMU
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.1_2
    • /
    • pp.113-132
    • /
    • 2020
  • In this paper, a class of linear second order singularly perturbed delay differential turning point problems containing a small delay (or negative shift) on the reaction term and when the solution of the problem exhibits twin boundary layers are examined. A hybrid finite difference scheme on an appropriate piecewise-uniform Shishkin mesh is constructed to discretize the problem. We proved that the method is almost second order ε-uniformly convergent in the maximum norm. Numerical experiments are considered to illustrate the theoretical results.

Oscillatory Behavior of Linear Neutral Delay Dynamic Equations on Time Scales

  • Saker, Samir H.
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.2
    • /
    • pp.175-190
    • /
    • 2007
  • By employing the Riccati transformation technique some new oscillation criteria for the second-order neutral delay dynamic equation $$(y(t)+r(t)y({\tau}(t)))^{{\Delta}{\Delta}}+p(t)y(\delta(t))=0$$, on a time scale $\mathbb{T}$ are established. Our results as a special case when $\mathbb{T}=\mathbb{R}$ and $\mathbb{T}=\mathbb{N}$ improve some well known oscillation criteria for second order neutral delay differential and difference equations, and when $\mathbb{T}=q^{\mathbb{N}}$, i.e., for second-order $q$-neutral difference equations our results are essentially new and can be applied on different types of time scales. Some examples are considered to illustrate the main results.

  • PDF

ON SOME NEW NONLINEAR DELAY AND WEAKLY SINGULAR INTEGRAL INEQUALITIES

  • Ma, Qing-Hua;Debnath, L.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.5_6
    • /
    • pp.877-888
    • /
    • 2008
  • This paper deals with some new nonlinear delay and weakly singular integral inequalities of Gronwall-Bellman type. These results generalize the inequalities discussed by Xiang and Kuang [19]. Several other inequalities proved by $Medve{\check{d}}$ [15] and Ou-Iang [17] follow as special cases of this paper. This work can be used in the analysis of various problems in the theory of certain classes of differential equations, integral equations and evolution equations. A modification of the Ou-Iang type inequality with delay is also treated in this paper.

  • PDF