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OPTIMALITY CONDITIONS FOR FUNCTIONAL 
DIFFERENTIAL EQUATIONS WITH TIME DELAY

Jin-Mun Jeong and Jong-Geoun Kim

1. Introduction
In this paper we deal with optimality conditions for retarded func

tional equations for the given cost functions. Under ensuring the reg
ularity of solution of the retarded system we proceed to necessary op
timality condition of the optimal solution for cost function J in 요et of 
a admissible controls that is a closed and convex.

As for the regularity of solution we reduce the results of G. Blasio, 
K. Kunlsch and A. Sinestrari [2] regarding term by term. There exists 
a many literatures which studies optimal control problems of control 
systems in Banach spaces. However, most studies have been devoted to 
the systems without delay and the papers treating the retarded system 
with unbounded operators are not so many([cf. see [3.8] in case where 
with bounded operators).

In section 2, we present some basic results on existence, unique
ness, and a representation formular functional differential equations 
in Hilbert spaces. We establish a form of a mild solution which is de
scribed by the integral equation in te口끄s of fundamental solution using 
structural operator. In section 3,4, we shall give two forms of quadratic 
cost functions; one is a quadratic cost criteria in linear dynamic sys
tem and the other is a feedback control law for regulator problem. 
First we consider results on the existence and uniqueness of optimal 
control in the closed convex admissable set. So we present the neces
sary conditions of optimality which are described by the adjoint state 
and integral inequality. Maximal principle and bang-bang principle for 
technologically important costs are also given.
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2. Functional differential equation with time delay
Let V and H be two Hilbert spaces The norm on V(resp. H) will be 

denoted by || * || ( resp. | - j) and the corresponding scalar products will 
be denoted by ((•, •))(re5P°("? *))• Assume V C the injection of V 
i교to H is co효tinuous and V is dense in H. H will be identified with its 
dual space. If V* denotes the dual space, H may be identified with a 
subspace of V* and may write V <Z H G. V*. Since V is dense in H and 
H is dense in V* and the corresponding injections are continuous. If 
an operator Ao is bounded linear operator from V to V* and generates 
an analytic semigroup, then it is easily seen that

(2.1) H = {xeV^-. / \\A0etAox\\ldt < oo),
Jo

for the time T > 0 where || - ||# is the norm of the element of V*. The 
realization of Aq in H which is the restriction of Aq to

-D(Ao) = {« G V ： Aqu G H}

is also denoted by Aq. therefore, in terms of the intermediate theory 
we can see that

(2-2) (V,U*)%2=H

and hence we can also replace the intermediate space F in the paper 
(이 with the space H. Hence, from now on we derive the same results of 
G. Blasio, K. Kunisch and A. Sinestrari [2]. Let a(n, v) be a bounded 
sesquilinear form defined in V x V satisfying Garding5s inequality

Re a(u, v) > co||u||2 — ci [c|2, cq > 0, c\ > 0.

Let Ao be the operator associated with a sesquilinear form

(Aotz, v) = —a(u, v), uy v

Then Ao generates an analytic semigroup in both H and V* and so 
the the following equation may be considered as an equation in both
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H and V*:

(2.3)
d f°
—x(t) =&)w(t) + Axx(t 一 h) + I a(s)A2X(t + £)ds 
dt J-h

+ -Bou(t),
(2.4) z(0) =g°, z(s) = gl(s), s e

Let the operators & and be a bounded linear operators from V to 
V*. The functio교 a(-) is assume to be a real valued Holder continous 
in [—/i,0] and the controller ope호atoi* Bq is a bounded linear operator 
from some Banach space U to H. Under these conditions, from (2.2) 
Theorem 3.3 of [2] we can obtain following result.

Proposition 2丄 Let g = (g气")€ Z = H x L2(-/i,0； V) and 
u e L2(0,T; U). Then for each T > 0? a solution x of the equation
(2.3) and (2.4) belongs to

L2(0. T; V) n WL2(。, T； v*) c C([0, T];

According to S. nakagiri [7], we define the fundamental solution 
W(t) for (2.3) and (2.4) by

顷 I 0 t < 0

for gQ G H. Since we assume that a(・) is Holder continuous the funda
mental solution exists as seen in [11]. It is known that W(t) is strongly 
continuous and AQW(t) and dW(t)/dt are strongly continuous except 
at t = nr, n = 0, 1, 2,....

For each t > 0, we introduce the structual operator F(-) from H x 
Z2(03T;V) to H x 乙2(o,丁； v*) defined by

Fg = ([Fg]°,[Fgn

[」"=g。,

[Fg]1 = Aig1(-h - s) + [ a(r^g1^ - s)dr 
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for g = (g气 g・)E H x L2(0,T; V}. The solution x(t) = x(t;g^u) of
(2.3) and (2.4) is represented by

x(t) = W(t)gQ + /° W(t + s)[础(s)ds+「W(t - s)B°u(s)d$ 
J-h Jo

for i > 0.
Let I = [0,T], 꼬 > 0 be a finite interval. We introduce the trans

posed system which is exactly same as in S. nakagiri[8]. Let 茹 G X*, 
q； G £1(I; H). The retarded transposed system in H is defined by
(2.5)

(项)+ + 方)+ / ^($)4珂(* ~ s)ds

+ g：(*) = o 허日 i G I,
(2-6)

，(끄) = 茹, ，(s) = 0 a.e. 5 G (T,T + h].
Let W*(t) denote the adjoint of W(t). Then as proved in S. Nakagiri 
[8])the mild solution of (2.5) and (2.6) is defined as follows:

y(t) = w\t 一幅)+《俨伝-风E, 

for i € I in the weak sence. The tranposed system is used to present 
a concrete form of the optimality conditions for control optimization 
problems.

3. Optimality contion for quadratic cost function
With every control u E £2(0,T; U) we associate the following cost 

function:
J(u) = f ||C诚(t) 一 福(圳|&dt + / (Nu(£),u(t))dt 

Jo Jo
where the operator C is a bounded from H to another Hilbert space 
X and Zd G 乙호(/;X). Finally we are given

N £ B(X\ and {Nuyu) > c||tz|j, c > 0, 
where B(X) denotes the space of bounded operators on X. Let xu(t) 
stands for solution of (2.3) and (2.4) associated with the control u 6 
Z2(0,T; t7). Let Uad be a closed convex subset of Z2(0, T; U).
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THEOREM 3.1. Let the operators C and N satisfy the condition 
mentioned above, then there exists a unique element u E Uad such 
that
(3.1) J(”)= inf J(v).

vEUad
Furthermore^ it is holds the following inequality:

I (-A-1Boy(s) + 7V(s),v(s) 一 u(s))ds > 0 
Jo

where y(t) is a solution of (2.5) and (2.6) for initial condition g(s) = 0 
for s £ F 7 + 씨 substituing q* by —Cr*A(Cxu(f) — zj). That is, y(t) 
satisfies the following transposed system:
(3.2)

+ 4 次/(t) + A 物。+ K) + / a(s)A2y(t — s)ds

—C*A(Cxu(t) — zd) = 0 a.e. t € Z,a.e.
(3-3)

y(T) = 0, g(s) = 0 a.e. s e (T, 7* + 씨
in the weak sense. Here^ the operator A is the canonical isomorphism 
ofU onto [7*.

Proof. Let x(i)=⑦(t;g?O). Then it holds that

J(v) = / ‘가(圳卩出 + / (JVv(t),
Jo Jo

=/ \\C(xv(t) 一 知))+ Cx(t) 一 zd(t)\\2dt + [ (Nv(t、)W、)、)dt
Jo Jo

=910m) — 2£(v) + i II我(t) - Cx(t)\^dt
Jo

where
tt(u, v) = j — a：(/), C(xv(t) —

Jo
+ I {Nu(t)jV(t)dt 

Jo
L(v) = / (zrf(i) — Cx(t\ C(xv(t) —
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The form ?r(u, v) is a continuous bili효ear form in 乙2(0撰「； U) and from 
assumption of the positive definite of the operator N we have

7F(v,v)>c||v||2 veL2(0,T; Uy

Therefore in virtue of Theorem 1.1 of Chapter 1 in [6] there exists a 
unique u G £2(0,T; U) such that (3.1). If u is an optimal con切시 (cf. 
Theorem 1.3. Chapter 1 in [6]), then

(3.4) j\u)(v — u) > 0 u CUjdc

where j\u)v means thr Frechet derivative of J at u, applied to v. It 
is easily seen that

- u) = (v - u,
=a膈(t) — 9扁(')•

Therefore, (3.4) is equivalent to

/p rj>
I (Cxu(t) — C(xv(<) — xu(t)))dt + i (Nu.v — u)dt ==

Jo Jo
/ (C*A(Ca:tt(i) - Zd(t\ Xv(t) - xu(t))dt + [ (Nu,v - u)dt

Jo Jo
>0.

Note that C* € 3(X*,矿)and for </)and in IT we have (C*AC^? (/>) 
=(C1如 C(/>) where duallity pairing is also denoted by (•, •). From Fu- 
bini's theorem and

知(Z)-a膈(Z)= f W(t — s)B0(v(3)— u(s))ds
Jo
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we have

((A"1 — s)C*A(Cz“(t) - W)) + N(s),

v(s)—也(s)))ds dt

〕：*」"代'旳矿7 - s)C*Ag(t) - zd(t))出 + N(s),
0

V(5)一 u(s)))ds

=厂(—A-由物s) + N(s\ Ms) - u(s)))ds 
Jo

> 0

where y(s) is given by (3.2 ) and (3.3), that is, g(s) is following form:

g(s)= 一 广 w\t 一 s)C* A(cn⑵ 一 Zd(t))出.

REMARK. Identifying the antidual U with U we need not use the 
canonical isomorphism A. But in case where U C. V* this leads to 
difficulties since H has already been identified with its dual.

Corollary 3.1 (Maximal principle) Let u be an optimal so
lution for J. Then

max(v, A-1Boy(s)) = (%码(s)g(s)) 
vGUad

where y(s) is given by in Theorem 3丄

Theorem 3.2 (Bang-Bang Principle). Let Bq and C be one to 
one mappings. If there is not the control u such that Cxu(t) = a.e? 
then the optimal control u(t) is a bang-bang control^ i.e? tz(i) satisfies 
u(t) G dUad for almost all t where dUad denotes the boundary ofUa.d-

Proof. On account of Corollary 3.1 it is enough to show that 
A-1Bo(t)?/(t) / 0 for almost all t. If Bo(i)y(t) = 0, then since

，(s) = -「W\t 一 s)Q* A(。我(t) 一 幻(圳站

J 3
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it follows that
Cxu(t) —，신 (t) = 0 a.e.

It is a contraction.

4. Optimality condition for regular cost function
In this section, the optimal control problem is to find a control u 

which minimizes the cost function

j(u) = (Gx(T),x(T))h+ + (Q(*)«(i)，U(t))u)dt
Jo

where c(・)is a solution of (2.3) and (2.4), G 6 B(H) is self adjoint 
and nonnegative, and D C Boo(0, T; which is a set of all essen
tially bounded on (0,T) and Q € Boo(0,T; U^U) are self adjoint and 
ninnegative, with Q(t) > m for some m > 0, for almost all f.

THEOREM 4.1. Let Uad be closed convex in L2(0, T; U). Then there 
exists a unique element u E Uad such that

(4.1) J(u) = inf J(v).veuad

Moreover, it is holds the following inequality:

[+ Q(s),u(s) — W(s))ds > 0 
Jo

where y(t) is a solution of (2.5) and (2.6) for initial condition that 
y(T) = G(xv(T) — xu(T)) and y(s) = 0 for s E (7二「+이 substituing 
by —⑦a。)). That is, y(t) satisfies the following transposed
system:

(4-2)
%)+ 4齢⑵ + 4 物(Z + 7z) + / a(s)A2y(t — s)ds

+ P(/)(xv(t) 一 我(t)) = 0 a.e. tel,
(4.3)

y(T) = G(xv(T) 一 xu(T)), g(s) = 0 a.e. s G (T, T + h] 
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in the weak sense.
Proof, Under the hypotheses on G、D)and Q> there exists a unique 

u which minimizes J. Then, f (u)(y — u) > 0. Since

J‘(们(u -«) = 2(G(x„(T) - xa(T)), &(T) - xu(T))

+ 2 f (P(f)(a?v(t) - :z涂)),如(*) - *"(*))

Jo
+ 2(Q(i)u(t),v(f) - u(t)),

(4.1) is equivalent to that

厂(3所*(丁 - s)(GW) - W)),u(s) - “(s))ds+
Jo
j (Bq j W*(t 一 s)(_E>Q)(a顷)-c負))出 + Q(s), u(s) 一 tz(s))ds

> 0.

Hence

g(S)=W*(T - S)G(外⑺-徐⑺)
»T

+ y W*(t - s)(Z)(f)(xu(i) - Xu^dt

is solves (4.2) and (4.3).
From now on, we consider the case where Uad = Z/2(0,T; U)t Let 

xu(t) = x(t]们 0) + J： W(t — s)B()u(s)ds be solution of (2.3) and (2.4). 
Define 꼬 € B(JZ,L2(0,T; J7)) 이id Tt 6 B(L2(0?T : H\H) by

(T朴◎ = / W(t-s^)ds.
Jo

7*= [ W(/-s 渺(s)ds.
Jo

Then we can write the cost function as
(4.4)

J(u) =(G(z(T; g, 0) + TtBqu), (z(T; g, 0) + TtBqu))h

+ (D(x(t: g, 0) + TBqu), x(t :们 0) + TBo«)l2(o,t；h)

+ (Qu,U)£2(0)T;[/).



362 Jin-Mun Jeong and Jong-Geoun Kim

The adjoint oprators T* and T壬 are given by

O(t) = — *)ds,

(对渺)(t) = W*(T -顷.

THEOREM 4.2. Let Uad = Z2(0,T; U). Then there exists a unique 
control u such that (4.1) and

«(i) =

for almost all t, where A = Q + BqT*DTBq + BqT^GT^Bq and where 
y(t) is a solution of (2.5) and (26) for initial condition that y(T)= 
Gx(T)) and g(s) = 0 for s € (2* T + 시 substituing g* by Dx(t\

Proof. The optimal control for J is unique solution of

(4.5) j\u)v = 0.

From (4.4) we have

f(u)v =2(G(z(?;g,0) + TtBqu),TtBou))

+ 2(D(x(t : g, 0) + TBow), TBqu)
+ 2(Q払们

=2((Q + + BT^GTtB)u, v)
+ 2(B*T*Da：(f;们 0) + B；T^Gx(T;第 0), v).

Hence (4.5) is equivalent to that

((A + B^Dx(t; g, 0) + B^Gx{T} g, 0))u, v) = 0

since A-1 G 瓦o(0)T；H, U). Hence from The definitions of T and Tp 
it follows that

y(t) = W*(T 一 t)Gx(T) + j： W\s 一 t)Dr(t)ds.

Therefore, the proof is complete.

REMARK. For the cost function J in section 4 we can also obtain 
the pointwise maximal principle and bang -bang principle.
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