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Abstract. By employing the Riccati transformation technique some new oscillation cri-
teria for the second-order neutral delay dynamic equation

(y(t) + r(t)y(τ(t)))∆∆ + p(t)y(δ(t)) = 0,

on a time scale T are established. Our results as a special case when T = R and T = N
improve some well known oscillation criteria for second order neutral delay differential and

difference equations, and when T = qN, i.e., for second-order q−neutral difference equations

our results are essentially new and can be applied on different types of time scales. Some

examples are considered to illustrate the main results.

1. Introduction

The theory of time scales, which has recently received a lot of attention, was
introduced by Stefan Hilger in his Ph. D. Thesis in 1988 in order to unify continuous
and discrete analysis (see [17]). The theory of dynamic equations unifies the theories
of differential equations and difference equations and it also extends these classical
cases to cases “in between”, e.g., to the so-called q−difference equations. Since
Stefan Hilger formed the definition of derivatives and integrals on time scales, several
authors has expounded on various aspects of this new theory, see the paper by
Agarwal et al. [1] and the references cited therein. The books on the subject of
time scales, by Bohner and Peterson [4], [5], summarize and organize much of time
scale calculus.

A time scale T is an arbitrary closed subset of the reals, and the cases when
this time scale is equal to the reals or to the integers represent the classical theories
of differential and of difference equations. Many other interesting time scales exist,
and they give rise to many applications (see [4]). On any time scale T we define the
forward and backward jump operators by

(1.1) σ(t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s < t}.
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A point t ∈ T, t > inf T, is said to be left–dense if ρ(t) = t, right–dense if t < sup T
and σ(t) = t, left–scattered if ρ(t) < t and right–scattered if σ(t) > t. The graininess
function µ for a time scale T is defined by µ(t) := σ(t)− t.

A function f : T → R is called rd−continuous function provided it is contin-
uous at right-dense points in T and its left-sided limits exist (finite) at left-dense
points in T. The set of rd−continuous functions f : T → R is denoted by Crd =
Crd(T) =Crd(T, R). The set of functions f : T → R that are differentiable and
whose derivative is rd−continuous function is denoted by C1

rd = C1
rd(T) =C1

rd(T,
R).

A function p : T → R is called positively regressive (we write p ∈ <+) if it is
rd−continuous function and satisfies 1 + µ(t)p(t) > 0 for all t ∈ T. For a function
f : T → R (the range R of f may be actually replaced by any Banach space) the
(delta) derivative is defined by

(1.2) f∆(t) = (f(σ(t))− f(t)) /(σ(t)− t),

if f is continuous at t and t is right–scattered. If t is not right–scattered then the
derivative is defined by

(1.3) f∆(t) = lim
s→t

f(σ(t))− f(s)
t− s

= lim
t→∞

f(t)− f(s)
t− s

,

provided this limit exists. A function f : [a, b] → R is said to be right–dense
continuous if it is right continuous at each right–dense point and there exists a finite
left limit at all left–dense points, and f is said to be differentiable if its derivative
exists. A useful formula is

(1.4) fσ = f(σ(t)) = f(t) + µ(t)f∆(t).

We will make use of the following product and quotient rules for the derivative of
the product fg and the quotient f/g (where ggσ 6= 0) of two differentiable functions
f and g

(fg)∆ = f∆g + fσg∆ = fg∆ + f∆gσ,(1.5) (
f

g

)∆

=
f∆g − fg∆

ggσ
.(1.6)

For a, b ∈ T, and a differentiable function f, the Cauchy integral of f∆ is defined
by ∫ b

a

f∆(t)∆t = f(b)− f(a).

An integration by parts formulas read

(1.7)

{ ∫ b

a
f(t)g∆(t)∆t = [f(t)g(t)]ba −

∫ b

a
f∆(t)gσ∆t,∫ b

a
fσg∆(t)∆t = [f(t)g(t)]ba −

∫ b

a
f∆(t)g(t)∆t,
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infinite integral is defined as∫ ∞

a

f(t)∆t = lim
b→∞

∫ b

a

f(t)∆t,

and the integration on discrete time scales is defined by∫ b

a

f(t)∆t =
∑

t∈[a,b)

µ(t)f(t).

Note that if T = R, we have σ(t) = ρ(t) = t,

f∆(t) = f
′
(t),

∫ b

a

f(t)∆t =
∫ b

a

f(t)dt.

If T = Z, we have σ(t) = t + 1, µ(t) ≡ 1,

f∆ = ∆f and
∫ b

a

f(t)∆t =
b−1∑
t=a

f(t),

If T =hZ, h > 0, we have σ(t) = t + h, µ(t) = h,

f∆ = ∆hf =
f(t + h)− f(t)

h
and

∫ b

a

f(t)∆t =

b
h−1∑
i= a

h

f(i),

If T=qN = {t : t = qn, n ∈ N, q > 1}, we have σ(t) = qt, µ(t) = (q − 1)t

x∆
q (t) =

x(qt)− x(t)
(q − 1)t

,

∫ b

a

f(t)∆t =
∑

t∈(a,b)

µ(qn)f(qn).

If T ={tn : n ∈ N0}, where tn be the so-called harmonic numbers defined by

t0 = 0, tn =
n∑

k=1

1
k

, n ∈ N,

we have σ(tn) = tn+1, µ(tn) = 1
n+1 and

x∆(tn) = (n + 1)∆x(tn),
∫ b

a

f(t)∆t =
∑

t∈(a,b)

µ(t)f(t).

If T = N2
0 = {n2 : n ∈ N0}, we have σ(t) = (

√
t + 1)2 and µ(t) = 1 + 2

√
t for t ∈ T

and

x∆(t) =
x((
√

t + 1)2)− x(t)
1 + 2

√
t

and
∫ b

a

f(t)∆t =
b∑

n=0

µ(t)f(t).



178 Samir H. Saker

In recent years there has been much research activity concerning the oscillation and
nonoscillation of solutions of ordinary dynamic equations on time scales. We refer
the reader to the papers [2], [3], [6]-[14], [18], [19], [20].

In this paper, we are concerned with oscillation of the second-order linear neutral
delay dynamic equation

(1.8) [y(t) + r(t)y(τ(t))]∆∆ + p(t)y(δ(t)) = 0,

on a time scale T. Throughout this paper we assume that:

(h1) The delay functions τ(t) ≤ t and δ(t) ≤ t satisfy τ(t) : T → T and δ(t) :
T → T for all t ∈ T and limt→∞ δ(t) = limt→∞ τ(t) = ∞,

(h2) r(t) and p(t) are positive real-valued rd− continuous functions defined on T
and 0 ≤ r(t) < 1.

Recall that a solution of (1.8) is a nontrivial real function y(t) such that y(t) +
r(t)y(τ(t)) ∈ C2

rd[ty,∞) for ty ≥ t0 and satisfying equation (1.8) for t ≥ ty. Our
attention is restricted to those solutions of (1.8) which exist on some half line [ty,∞)
and satisfy sup{|y(t)| : t > t1} > 0 for any t1 ≥ ty. A solution y(t) of (1.8) is said to
be oscillatory if it is neither eventually positive nor eventually negative, otherwise
it is nonoscillatory. Equation (1.8) is said to be oscillatory if all its solutions are
oscillatory. Since we are interested in the oscillatory and asymptotic behavior of
solutions near infinity, we assume that sup T = ∞, and define the time scale interval
[t0,∞)T by [t0,∞)T := [t0,∞) ∩ T. Note that, if T = R, (1.8) becomes the second-
order neutral delay differential equation

(1.9) [y(t) + r(t)y(τ(t))]
′′

+ p(t)y(δ(t)) = 0.

If T = Z, (1.8) becomes the second-order neutral delay difference equation

(1.10) ∆2 [y(t) + r(t)y(τ(t))] + p(t)y(δ(t)) = 0.

If T =hZ, h > 0, (1.8) becomes the second-order neutral delay difference equation

(1.11) ∆2
h [y(t) + r(t)y(τ(t))] + p(t)y(δ(t)) = 0.

If T=qN = {t : t = qn, n ∈ N, q > 1}, (1.8) becomes the second order q−neutral
delay difference equation

(1.12) ∆2
q [y(t) + r(t)y(τ(t))] + p(t)y(δ(t)) = 0.

If T = N2
0 = {n2 : n ∈ N0}, (1.8) becomes the second-order neutral delay difference

equation

(1.13) ∆2
N (y(t) + r(t)y(τ(t))) + p(t)y(δ(t)) = 0.
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If T = Tn = {tn : n ∈ N0} where tn be the so-called harmonic numbers (1.8)
becomes the second–order neutral difference equation

(1.14) ∆2
tn

[y(t) + r(t)y(τ(t))] + p(t)y(δ(t)) = 0.

Grammatikopoulos et al. [15] considered (1.9) and proved that: If p(t) > 0, 0 ≤
r(t) < 1 and

(1.15)

∞∫
t0

p(s)[1− r(δ(s))]ds = ∞.

Then every solution of (1.9) oscillates. Note that the condition (1.15) can not be
applied to the neutral equation

(1.16) [y(t) + r(t)y(τ(t))]
′′

+
β

t2
y(δ(t)) = 0,

where β > 0 and 0 ≤ r(t) < 1.
For oscillation of the second-order neutral delay difference equation (1.3) Zhang

and Cheng [21] obtained the discrete analogy of (1.10) and proved that: If p(t) > 0,
0 ≤ r(t) < 1 are positive sequences and

(1.17)
∞∑

i=n0

p(i)[1− r(δ(i))] = ∞,

then every solution of (1.10) oscillates. Note that the condition (1.17) can not be
applied to the second-order neutral delay difference equation

(1.18) ∆2[y(n) + r(n)y(τ(n))] +
β

n2
y(δ(n)) = 0, n ≥ n0,

where β > 0 and 0 ≤ r(n) < 1.
Our aim in this paper, in Section 2 is to apply the Riccati transformation tech-

nique to establish some new sufficient condition for oscillation of neutral delay dy-
namic equation (1.8). Our result as a special case when T = R and T = N improves
the oscillation condition (1.15) established by Grammatikopoulos et al. [15] for
second order delay differential equation (1.9) and the oscillation condition (1.17)
established by Zhang and Cheng [21] for second-order difference equation (1.10).
When T =hN and T =qN = {t : t = qk, k ∈ N, q > 1}, T = N2 = {t2 : t ∈ N} and
T = Tn = {tn : n ∈ N0}, i.e., for equations (1.10)-(1.14) our oscillation results are
essentially new. In Section 3, we will apply our results for equations (1.9)-(1.14).
An example illustrating our main result is presented.
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2. Main results

In this section, we use the Riccati technique to establish some new oscillation
criteria of 1.8). In what follows, it will be assumed that the condition∫ ∞

t0

σ(s)p(s)(1− r(δ(s))∆s = ∞,

is fulfilled. We start with the following lemmas which the proof is similar to that
of the proof of Lemma 2.1 in [2].

Lemma 2.1. Let x be a positive solution of x∆∆(t) + p(t)x(δ(t)) ≤ 0, on [t0,∞)
and T = τ−1(t0). Then

(i) x∆(t) ≥ 0, x(t) ≥ tx∆(t)for t ≥ T ;

ii) x is nondecreasing, while x(t)/t is nonincreasing on [T,∞)T.

Theorem 2.1. Assume that (h1) and (h2) hold. Furthermore assume that here
exists a positive rd-continuous ∆-differentiable functions α(t) such that

(2.1) lim sup
t→∞

∫ t

t0

[
α(s)Q(s)−

((
(
α∆(s)

)
+
)
2

4α(s)

]
∆s = ∞,

where

Q(s) =
δ(s)
s

p(s)(1− r(δ(s))),(
α∆(t)

)
+

= max{α∆(t), 0}.Then every solution of (1.8) is oscillatory on [t0,∞)T.

Proof. Suppose to the contrary that y(t) is a nonoscillatory solution of (1.8) and
let t1 ≥ t0 be such that y(t) 6= 0 for all t ≥ t1, so without loss of generality, we may
assume that y is an eventually positive solution of (1.8) with y(δ(t)), and y(τ(t)) > 0
for all t ≥ t1 sufficiently large. Set

(2.2) x(t) = y(t) + r(t)y(τ(t)).

From (2.2), (1.8) and (h2) we have

(2.3) x∆∆(t) + p(t)y(δ(t)) ≤ 0,

for all t ≥ t1, and so x∆(t) is an eventually decreasing function. We first show
that x∆(t) is eventually nonnegative. Indeed, since p(t) is a positive function,
the decreasing function x∆(t) is either eventually positive or eventually negative.
Suppose there exists an integer t2 ≥ t1 such that x∆(t2) = c < 0, then from (2.3)
we have x∆(t) < x∆(t2) = c for t ≥ t2, hence x∆(t) ≤ c,which implies that

(2.4) x(t) ≤ x(t2) + c(t− t2) → −∞ as t →∞,
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which contradicts the fact that x(t) > 0 for all t ≥ t2. Hence x∆(t) is eventually
nonnegative. Therefore, we see that there is some t1 such that

(2.5) x(t) > 0, x∆(t) ≥ 0, x∆∆(t) < 0, t ≥ t1.

This implies that

y(t) = x(t)− r(t)y(τ(t)) = x(t)− r(t)[x(τ(t))− r(τ(t))y(τ(τ(t))]
≥ x(t)− r(t)x(τ(t)) ≥ (1− r(t))x(t).

Then, for t ≥ t2 sufficiently large, we see that

(2.6) y(δ(t)) ≥ (1− r(δ(t)))x(δ(t)).

From (2.3) and (2.6) we obtain for t ≥ t2

(2.7) x∆∆(t) + p(t)(1− r(δ(t)))x(δ(t)) ≤ 0.

Now, we define the function w(t) by the Riccati substitution

(2.8) w(t) = α(t)
x∆(t)
x(t)

, t ≥ t2.

Then form (2.5), we have w(t) > 0 and using (1.5) and (1.6) yield that

w∆(t) =
(
x∆

)σ
[
α(t)
x(t)

]∆

+
α(t)
x(t)

x∆∆(t)(2.9)

=
α(t)
x(t)

x∆∆(t) +
(
x∆

)σ
[
x(t)α∆(t)− α(t)(x(t))∆

x(t)xσ

]
.

In view of (2.7), Lemma 2.1 and (2.9), we obtain

(2.10) w∆(t) ≤ −α(t)Q(t) +

(
α∆(t)

)
+

ασ
wσ −

α(t)
(
x∆

)σ (x(t))∆

x(t)xσ
.

From (2.6) since x∆∆(t) < 0 we have for t ≥ t2

(2.11) x∆(t) ≥
(
x∆

)σ
.

It follows from (2.10), and (2.11) that

w∆(t) ≤ −α(t)Q(t) +

(
α∆(t)

)
+

ασ
wσ −

α(t)
(
(x∆)σ

)2

x(t)xσ
.

Since x(t) is nondecreasing we see that xσ ≥ x(t), and this implies

(2.12) w∆(t) ≤ −α(t)Q(t) +

(
α∆(t)

)
+

ασ
wσ −

α(t)
(
(x∆)σ

)2

(x2)σ
.
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From (2.8) and (2.12), we obtain

(2.13) w∆(t) ≤ −α(t)Q(t) +

(
α∆(t)

)
+

ασ
wσ − α(t)

(ασ)2
(wσ)2 .

Integrating from t2 to t (t ≥ t2), we have∫ t

t2

α(s)Q(s)∆s(2.14)

≤ −
∫ t

t2

w∆(s)∆s +
∫ t

t1

(
α∆(t)

)
+

ασ
wσ∆s−

∫ t

t2

α(s)
(ασ)2

(wσ)2 ∆s,

hence

(2.15)
∫ t

t2

α(s)Q(s)∆s ≤ w(t2) +
∫ t

t2

(
α∆(s)

)
+

ασ
wσ(s) ∆s−

∫ t

t1

α(s)
(ασ)2

(wσ)2.

Then, we have∫ t

t2

α(s)Q(s)∆s(2.16)

≤ w(t2)−
∫ t

t2

[√
α(s)
ασ

wσ +

(
α∆(s)

)
+

2
√

α(s)

]2

∆s +
∫ t

t1

(
(
α∆(s)

)
+
)2

4α(s)
∆s

(2.17)
∫ t

t2

α(s)Q(s)∆s < w(t2) +
∫ t

t1

(
(
α∆(s)

)
+
)2

4α(s)
∆s.

Hence

(2.18)
∫ t

t2

[
α(s)Q(s)−

(
(
α∆(s)

)
+
)2

4α(s)

]
< w(t2),

which contradicts the condition (2.1). The proof is complete. �

In the following theorem, we present new oscillation criteria for (1.8) of Kamenev
type.

Theorem 2.2. Assume that (h1) and (h2) hold. Let α(t) be as defined in Theorem
2.1. If for m > 1

(2.19) lim sup
t→∞

1
tm

∫ t

t0

[
(t− s)mα(s)Q(s)− (ασ)2B2(t, s)

4α(s)(t− s)m

]
∆s = ∞,

where

B(t, s) = (t− s)m

(
α∆(s)

)
+

ασ
−m(t− σ(s))m−1, t ≥ s ≥ t0.
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Then every solution of (1.8) is oscillatory on [t0,∞)T.

Proof. Suppose to the contrary that y(t) is a nonoscillatory solution of (1.8) and
let t1 ≥ t0 be such that y(t) 6= 0 for all t ≥ t1, so without loss of generality, we may
assume that y is an eventually positive solution of (1.8) y(δ(t)) and y(τ(t)) > 0 for
all t ≥ t1 sufficiently large. We proceed as in the proof of Theorem 2.1 to prove
that there exists t2 ≥ t1 such that (2.13) holds for all t ≥ t2. Multiplying (2.13) by
(t− s)m and integrating from t2 to t, we have∫ t

t2

(t− s)mα(s)Q(s)∆s ≤ −
∫ t

t2

(t− s)mw∆(s)∆s(2.20)

+
∫ t

t2

(t− s)m

(
α∆(s)

)
+

ασ
wσ∆s−

∫ t

t2

(t− s)mα(s)
(ασ)2

(wσ)2 ∆s.

Using the integration by parts formula (1.7), we have

(2.21) −
∫ t

t2

(t− s)mw∆(s)∆s = − (t− s)mw(s)|tt2 +
∫ t

t2

((t− s)m)∆s wσ∆s.

Now, we prove that

(2.22) ((t− s)m)∆s ≤ −m(t− σ(s))m−1.

We consider the following to cases: (i) µ(t) = 0, (ii) µ(t) 6= 0. If (i) holds, then

(2.23) ((t− s)m)∆s = −m(t− s)m−1..

If (ii) holds, then we have

((t− s)m)∆ =
1

µ(s)
[((t− σ(s))m)− ((t− s)m)]

= − 1
σ(s)− s

[((t− s)m)− ((t− σ(s))m)] .

Using Hardy, Littlewood and Polya inequality (cf. [16])

xm − ym ≥ mym−1(x− y) for all x ≥ y > 0 and m ≥ 1,

we have [(t− s)m − (t− σ(s))m] ≥ m((t− σ(s))m−1(σ(s)− s), and then we obtain

(2.24) ((t− s)m)∆s ≤ −m(t− σ(s))m−1.

Then, from (2.23) and (2.24), since in general case σ(s) ≥ s, we see that (2.22)
holds. From (2.22)-(2.24), we can obtain∫ t

t2

(t− s)mα(s)Q(s)∆s(2.25)

≤ w(t2) (t− t2)
m +

∫ t

t2

[
(t− s)m

(
α∆(s)

)
+

ασ
−m(t− σ(s))m−1

]
wσ(s) ∆s

−
∫ t

t2

(t− s)mα(s)
(ασ)2

(wσ)2.
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Then, as in the proof of Theorem 2.1, we have∫ t

t2

(t− s)mα(s)Q(s)∆s ≤ w(t2) (t− t2)
m +

∫ t

t2

(ασ)2B2(t, s)
4α(s)(t− s)m

∆s.

Hence

lim sup
t→∞

1
tm

∫ t

t2

[
(t− s)mα(s)Q(s)− (ασ)2B2(t, s)

4α(s)(t− s)m

]
→ w(t2),

which contradicts the condition (2.19). The proof is complete. �

In following, we obtain new oscillation criteria which can be considered as gen-
eralization of Theorem 2.2. We define the function space < as follows: H ∈ <
provided H is defined for t0 ≤ s ≤ t, t, s ∈ [t0,∞)T H(t, s) ≥ 0, H(t, t) = 0,
H∆s(t, s) ≤ 0 for t ≥ s ≥ t0, and for each fixed t, H∆s(t, s) is delta integrable with
respect to s.

Theorem 2.3. Assume that (h1), (h2) hold and let H ∈ < and

(2.26) h(t, s) = −H∆s(t, s)√
H(t, s)

.

If there exists a positive real-valued rd-continuous function α(t) such that

(2.27) lim
t→∞

sup
1

H(t, t0)

t∫
t0

H(t, s)

[
α(s)Q(s)− (ασ)2

4α(s)
R2(t, s)

]
∆s = ∞,

where
(
α∆(s)

)
+

= max{0,
(
α∆(s)

)
} and

R(t, s) =

[
h(t, s)/

√
H(t, s)−

(
α∆(s)

)
+

ασ

]
.

Then every solution of (1.8) is oscillatory on [t0,∞)T.

Proof. We proceed as in the proof of Theorem 2.1 to prove that there exists t2 ≥ t1
such that (2.13) holds for t ≥ t2. From (2.13), it follows that

t∫
t2

H(t, s)α(s)Q(s)∆s ≤ −
t∫

t2

H(t, s)w∆(s)∆s(2.28)

+

t∫
t2

H(t, s)

(
α∆(s)

)
+

ασ
wσ∆s−

t∫
t2

H(t, s)
α(s)
(ασ)2

(wσ)2∆s.
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Using integration by parts formula (1.7), we have

t∫
t2

H(t, s)w∆(s)∆s = H(t, s)w(s)|tt2 −
t∫

t2

H∆s(t, s)wσ∆s(2.29)

= −H(t, t2)w(t2)−
t∫

t2

H∆s(t, s)wσ∆s,

where H(t, t) = 0. Substituting from (2.29) in (2.28) and use (2.26), we get

t∫
t2

H(t, s)α(s)Q(s)∆s ≤ H(t, t2)w(t2)−
t∫

t2

h(t, s)
√

H(t, s)wσ∆s(2.30)

+

t∫
t2

H(t, s)

(
α∆(s)

)
+

ασ
wσ∆s−

t∫
t2

H(t, s)
α(s)
(ασ)2

(wσ)2∆s.

Hence,

t∫
t2

H(t, s)α(s)Q(s)∆s(2.31)

≤ H(t, t2)w(t2)−
t∫

t2

[
h(t, s)

√
H(t, s)−H(t, s)

(
α∆(s)

)
+

ασ

]
wσ∆s

−
t∫

t2

H(t, s)
α(s)
(ασ)2

(wσ)2∆s.

Therefore

t∫
t2

H(t, s)α(s)Q(s)∆s ≤ H(t, t2)w(t2)(2.32)

−
t∫

t2


√

H(t, s)α(s)
ασ

wσ +
ασ

[
h(t, s)

√
H(t, s)−H(t, s)

(α∆(s))+
ασ

]
2
√

H(t, s)α(s)


2

∆s

+

t∫
t2

H(t, s)
(ασ)2

4α(s)

[
h(t, s)/

√
H(t, s)−

(
α∆(s)

)
+

ασ

]2

∆s.
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Then, for all t ≥ t2 we have

t∫
t2

H(t, s)

α(s)Q(s)− (ασ)2

4α(s)

[
h(t, s)/

√
H(t, s)−

(
α∆(s)

)
+

ασ

]2
∆s(2.33)

< H(t, t2)w(t2),

and this implies that

1
H(t, t2)

t∫
t2

H(t, s)

α(s)Q(s)− (ασ)2

4α(s)

[
h(t, s)/

√
H(t, s)−

(
α∆(s)

)
+

ασ

]2
∆s(2.34)

< w(t2),

for all large t, which contradicts (2.27). The proof is complete. �

As an immediate consequence of Theorem 2.3 we get the following.

Corollary 2.1. Let the assumption (2.27) in Theorem 2.1 be replaced by

(2.35) lim
t→∞

sup
1

H(t, t0)

∫ t

t0

H(t, s)α(s)Q(s)∆s = ∞,

lim
t→∞

sup
1

H(t, t0)

∫ t

t0

H(t, s)
(ασ)2

4α(s)

[
h(t, s)/

√
H(t, s)−

(
α∆(s)

)
+

ασ

]2

∆s < ∞,

then every solution of (1.8) is oscillatory on [t0,∞)T.

Remark 2.2. With an appropriate choice of the functions H and h one can derive
from the conditions on Remark 2.1 a number of oscillation criteria for (1.8) on
different types of time scales. Consider, for example the function H(t, s) = (t− s)λ,
(t, s) ∈ D with λ ≥ 1 is an odd integer. Evidently H belongs to the class < and
then (2.27) reduces to the oscillation criterion of Kamenev-type. Also, one can use
the factorial function H(t, s) = (t−s)(k) where t(k) = t(t−1) · · · (t−k+1), t(0) = 1.
In this case

H∆2(t− s)(λ) =
(t− σ(s))(k) − (t− s)(k)

µ(s)
= − (t− s)(k) − (t− σ(s))(k)

µ(s)

≥ −(k)(t− s)(k−1).

Example 2.1. Consider the following second-order neutral delay dynamic equation

(2.36)
[
y(t) +

1
δ−1(t)

y(τ(t))
]∆∆

+
λ

tδ(t)
y(δ(t)) = 0, t ∈ T,
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where T = [1,∞) is a time scale and τ and δ are nonnegative constants such that
τ(t) and δ(t) ∈ T and λ > 0 is a constant. In (2.35) p(t) = λ

t2 , and r(δ(t)) = 1
t < 1.

It is easy to see that the assumptions (h1) and (h2) hold. To apply Theorem 2.1,
it remains to satisfy the condition (2.1). By choosing α(s) = s, we have

lim
t→∞

sup
∫ t

t0

[
α(s)Q(s)− 1

4s

]
∆s

= lim
t→∞

sup
∫ t

t0

[
λ

s
(1− 1

s
)− 1

4s

]
∆s

= lim
t→∞

sup

t∫
t0

(
4λ− 1

4s
− λ

s2

)
∆s = ∞, if λ >

1
4

Hence, by Theorem 2.1 every solution of (2.36) oscillates if λ > 1
4 .

3. Applications

In this section, we apply the results in Section 2, to establish some oscillation
criteria for equation (1.9)-(1.14).

Corollary 3.1. Assume that r(t) and p(t) are positive functions defined on
[t0,∞) ⊂ R, and 0 ≤ r(t) < 1 and τ(t) and δ(t) are delay function. Furthermore
there exists a positive continuous differentiable functions α(t) such that

lim sup
t→∞

∫ t

t0

α(s)Q(s)−
(
(
α

′
(s)

)
+
)
2

4α(s)

 ds = ∞,

where

Q(s) =
δ(s)
s

p(s)(1− r(δ(s))),(
α

′
(t)

)
+

= max{α′
(t), 0}. Then every solution of (1.9) is oscillatory on [t0,∞).

Corollary 3.2. Assume that r(t) and p(t) are positive functions defined on
[t0,∞) ⊂ R, and 0 ≤ r(t) < 1 and τ(t) and δ(t) are delay function. Furthermore
there exists a positive continuous differentiable functions α(t) such that

lim
t→∞

sup
1

H(t, t0)

∫ t

t0

H(t, s)
[
α(s)Q(s)− α(s)A2(t, s)

4

]
ds = ∞,

where

A(t, s) =

h(t, s)/
√

H(t, s)−

(
α

′
(s)

)
+

α(s)

 .
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Then every solution of (1.9) oscillates.

Corollary 3.3. Assume that r(n) and p(n) are positive sequences defined on
[t0,∞) ⊂ N, and 0 ≤ r(n) < 1 and τ(n) ∈ N, δ(n) ∈ N. Furthermore, assume
that there exists a positive sequence α(n) such that

lim sup
t→∞

t−1∑
i=t0

[
α(i)Q(i)−

(
(∆α(i))+

)2

4α(i)

]
= ∞,

where

Q(i) =
δ(i)
i

p(i)(1− r(δ(i))),

(∆α(i))+ = max{0, ∆α(i)}. Then every solution of (1.10) oscillates.

Corollary 3.4. Assume that r(n) and p(n) are positive sequences defined on
[t0,∞) ⊂ N, and 0 ≤ r(n) < 1 and τ(n) ∈ N, δ(n) ∈ N. Furthermore, assume
that there exists a positive sequence α(n) such that

lim
m→∞

sup
1

H(m,n0)

m−1∑
n=n0

H(m,n)
[
α(n)Q(n)− α2(n + 1)

4α(n)
B2(m,n)

]
= ∞,

where

B(m,n) =
(

h(m,n)/
√

H(m,n)−
(∆α(n))+
α(n + 1)

)
.

Then every solution of (1.10) oscillates.

Corollary 3.5. Assume that r(n) and p(n) are positive sequences defined on
[t0,∞) ⊂ hN, h > 0, and 0 ≤ r(n) < 1, τ(n) and δ(n) ∈ hN. Furthermore,
assume that there exists a positive sequence α(n) such that

lim sup
t→∞

t
h−1∑
i=

t0
h

[
α(i)Q(i)−

(
(∆hα(i))+

)2

4α(i)

]
= ∞,

where (∆hα(i))+ = max{0,∆hα(i)}. Then every solution of (1.11) oscillates.

Corollary 3.6. Assume that r(n) and p(n) are positive sequences defined on
[t0,∞) ⊂ hN, h > 0, and 0 ≤ r(n) < 1, τ(n) and δ(n) ∈ hN. Furthermore,
assume that there exists a positive sequence α(n) such that

lim
t→∞

sup
1

H(m,n0)

m
h −1∑

n=
t0
h

H(m,n)
[
α(n)Q(n)− α2(n + h)C2(m,n)

4α(n)

]
= ∞,

where

C(m,n) =
(

h(m,n)/
√

H(m,n)−
(∆hα(n))+
α(n + h)

)
.
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Then every solution of (1.11) oscillates.

Corollary 3.7. Assume that r(n) and p(n) are positive sequences defined on
[t0,∞) ⊂ qN and 0 ≤ r(n) < 1, τ and δ ∈ qN. Furthermore, assume that there
exists a positive sequence α(n) such that

∞∑
i=0

µ(qi)

α(qi)Q(qi)−

((
∆qα(qi)

)
+

)2

4α(qi)

 = ∞,

where (∆qα(i))+ = max{0,∆qα(i)}. Then every solution of (1.12) oscillates.

Corollary 3.8. Assume that r(n) and p(n) are positive sequences defined on
[t0,∞) ⊂ qN and 0 ≤ r(n) < 1, τ and δ ∈ qN. Furthermore, assume that there
exists a positive sequence α(n) such that

lim
t→∞

sup
1

H(qt, t0)

t∑
k=0

µ(qk)H(qt, qk)
[
α(qk)Q(qk)− α2(qk)F 2(qt, qk)

4α(qk)

]
= ∞,

F (t, s) =
(

h(t, s)/
√

H(t, s)−
(∆qα(s))+

α(s)

)
, (∆qα(s))+ = max{0,∆qα(s)}.

Then every solution of (1.12) oscillates.

The sufficient conditions for the oscillation of (1.13) and (1.14) are left to the
interested reader. One uses∫ b

t0

f(t)∆t =
∑

t∈[t0,b)

µ(t)f(t).
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