• 제목/요약/키워드: Deinococcus

검색결과 68건 처리시간 0.022초

Molecular Docking and Kinetic Studies of the A226N Mutant of Deinococcus geothermalis Amylosucrase with Enhanced Transglucosylation Activity

  • Hong, Seungpyo;Siziya, Inonge Noni;Seo, Myung-Ji;Park, Cheon-Seok;Seo, Dong-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권9호
    • /
    • pp.1436-1442
    • /
    • 2020
  • Amylosucrase (ASase, E.C. 2.4.1.4) is capable of efficient glucose transfer from sucrose, acting as the sole donor molecule, to various functional acceptor compounds, such as polyphenols and flavonoids. An ASase variant from Deinococcus geothermalis, in which the 226th alanine is replaced with asparagine (DgAS-A226N), shows increased polymerization activity due to changes in the flexibility of the loop near the active site. In this study, we further investigated how the mutation modulates the enzymatic activity of DgAS using molecular dynamics and docking simulations to evaluate interactions between the enzyme and phenolic compounds. The computational analysis revealed that the A226N mutation could induce and stabilize structural changes near the substrate-binding site to increase glucose transfer efficiency to phenolic compounds. Kinetic parameters of DgAS-A226N and WT DgAS were determined with sucrose and 4-methylumbelliferone (MU) as donor and acceptor molecules, respectively. The kcat/Km value of DgAS-A226N with MU (6.352 mM-1min-1) was significantly higher than that of DgAS (5.296 mM-1min-1). The enzymatic activity was tested with a small phenolic compound, hydroquinone, and there was a 1.4-fold increase in α-arbutin production. From the results of the study, it was concluded that DgAS-A226N has improved acceptor specificity toward small phenolic compounds by way of stabilizing the active conformation of these compounds.

Deinococcus radiodurans R1 Lysate Induces Tolerogenic Maturation in Lipopolysaccharide-Stimulated Dendritic Cells and Protects Dextran Sulfate Sodium-Induced Colitis in Mice

  • Song, Ha-Yeon;Han, Jeong Moo;Kim, Woo Sik;Lee, Ji Hee;Park, Woo Yong;Byun, Eui-Baek;Byun, Eui-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권7호
    • /
    • pp.835-843
    • /
    • 2022
  • Deinococcus radiodurans is an extremophilic bacterium that can thrive in harsh environments. This property can be attributed to its unique metabolites that possess strong antioxidants and other pharmacological properties. To determine the potential of D. radiodurans R1 lysate (DeinoLys) as a pharmacological candidate for inflammatory bowel disease (IBD), we investigated the antiinflammatory activity of DeinoLys in bone marrow-derived dendritic cells (BMDCs) and a colitis mice model. Lipopolysaccharide (LPS)-stimulated BMDCs treated with DeinoLys exhibited alterations in their phenotypic and functional properties by changing into tolerogenic DCs, including strongly inhibited proinflammatory cytokines (TNF-α and IL-12p70) and surface molecule expression and activated DC-induced T cell proliferation/activation with high IL-10 production. These phenotypic and functional changes in BMDCs induced by DeinoLys in the presence of LPS were abrogated by IL-10 neutralization. Furthermore, oral administration of DeinoLys significantly reduced clinical symptoms against dextran sulfate sodium-induced colitis, including body weight loss, disease activity index, histological severity in colon tissue, and lower myeloperoxidase level in mice. Our results establish DeinoLys as a potential anti-inflammatory candidate for IBD therapy.

Sediment에서의 전기활성 박테리아 분포 특성 (Distribution of Electrochemically Active Bacteria in the Sediment)

  • 손형식;손희종;김미아;이상준
    • 대한환경공학회지
    • /
    • 제32권12호
    • /
    • pp.1094-1101
    • /
    • 2010
  • 낙동강, 회동 및 기장에서 채집한 sediment의 미생물 군집을 FISH 분석을 통하여 조사한 결과, ${\alpha}$ 그룹, Acidobacter 그룹 및 Cyanobacter 그룹의 분포비율이 가장 높았으며 전체적으로 서로 유사한 분포 특성을 나타내었다. 각각의 sediment를 접종한 MFC 농화배양 이후의 coulombic yield는 낙동강, 회동 및 기장의 경우 각각 0.64 C, 0.50 C, 0.61 C로 나타났으며, 농화배양 완료 후의 미생물 군집분포는 ${\beta}$-Proteobacteria, ${\gamma}$-Proteobacteria, Acidobacter 그룹 및 Firmicutes 그룹이 농화배양 전보다 각각 45~90%, 50~90%, 40~80% 및 45~125% 정도 생체량이 증가한 것으로 나타났다. 농화배양이 끝난 후 16S rDNA를 이용한 미생물 동정결과에서, 낙동강 sediment를 주입한 MFC의 경우는 ${\alpha}$-Proteobacteria의 속하는 Roseomonas sp., Azospillum sp.와 ${\gamma}$-Proteobacteria의 Frateuria sp., Dyella sp., Enterobacter sp.와 Deinococci 그룹의 Deinococcus sp.가 동정되었고, 기장 sediment는 ${\alpha}$-Proteobacteria의 Azospillum sp.와 ${\beta}$-Proteobacteria의 Delftia sp., Ralstonia sp.와 ${\gamma}$-Proteobacteria의 Klebsiella sp. 와 Deinococci 그룹의 Deinococcus sp.가 동정되었으며, 회동 sediment는 ${\gamma}$-Proteobacteria의 Pseudomonas sp., Klebsiella sp.와 Deinococci 그룹의 Deinococci sp.와 Actinobacteria 그룹의 Leifsonia sp.와 Bacilli 그룹의 Bacillus sp.가 동정되었다.

The Site-Directed A184S Mutation in the HTH Domain of the Global Regulator IrrE Enhances Deinococcus radiodurans R1 Tolerance to UV Radiation and MMC Shock

  • Zhang, Chen;Zhou, Zhengfu;Zhang, Wei;Chen, Zhen;Song, Yuan;Lu, Wei;Lin, Min;Chen, Ming
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권12호
    • /
    • pp.2125-2134
    • /
    • 2015
  • IrrE is a highly conserved global regulator in the Deinococcus genus and contributes to survival from high doses of UV radiation, ionizing radiation, and desiccation. Drad-IrrE and Dgob-IrrE from Deinococcus radiodurans and Deinococcus gobiensis I-0 each share 66% sequence identity. However, Dgob-IrrE showed a stronger protection phenotype against UV radiation than Drad-IrrE in the D. radiodurans irrE-deletion mutant (ΔirrE), which may be due to amino acid residues differences around the DNA-binding HTH domain. Site-directed mutagenesis was used to generate a Drad-IrrE A184S single mutant, which has been characterized and compared with the ΔirrE mutant complemented strain with Drad-irrE, designated ΔirrE-E. The effects of the A184S mutation following UV radiation and mitomycin C (MMC) shock were determined. The A184S mutant displayed significantly increased resistance to UV radiation and MMC shock. The corresponding A184 site in Dgob-IrrE was inversely mutated, generating the S131A mutant, which exhibited a loss of resistance against UV radiation, MMC shock, and desiccation. qPCR analysis revealed that critical genes in the DNA repair system, such as recA, pprA, uvrA, and ddrB, were remarkably induced after UV radiation and MMC shock in the ΔirrE-IE and A184S mutants. These data suggested that A184S improves the ability against UV radiation and MMC shock, providing new insights into the modification of IrrE. We speculated that the serine residue may determine the efficiency of DNA binding, leading to the increased expression of IrrE-dependent genes important for protection against DNA damage.

irrE, an Exogenous Gene from Deinococcus radiodurans, Improves the Growth of and Ethanol Production by a Zymomonas mobilis Strain Under Ethanol and Acid Stresses

  • Zhang, Ying;Ma, Ruiqiang;Zhao, Zhonglin;Zhou, Zhengfu;Lu, Wei;Zhang, Wei;Chen, Ming
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권7호
    • /
    • pp.1156-1162
    • /
    • 2010
  • During ethanol fermentation, bacterial strains may encounter various stresses, such as ethanol and acid shock, which adversely affect cell viability and the production of ethanol. Therefore, ethanologenic strains that tolerate abiotic stresses are highly desirable. Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation, ultraviolet light, and desiccation, and therefore constitute an important pool of extreme resistance genes. The irrE gene encodes a general switch responsible for the extreme radioresistance of D. radiodurans. Here, we present evidence that IrrE, acting as a global regulator, confers high stress tolerance to a Zymomonas mobilis strain. Expression of the gene protected Z. mobilis cells against ethanol, acid, osmotic, and thermal shocks. It also markedly improved cell viability, the expression levels and enzyme activities of pyruvate decarboxylase and alcohol dehydrogenase, and the production of ethanol under both ethanol and acid stresses. These data suggest that irrE is a potentially promising gene for improving the abiotic stress tolerance of ethanologenic bacterial strains.

경상북도 동해안 해변모래에 서식하는 미생물 군집 비교 (Comparison of Bacterial Communities in Beach Sands along the East Coast of North Gyeongsang Province)

  • 강용호
    • 미생물학회지
    • /
    • 제50권4호
    • /
    • pp.376-380
    • /
    • 2014
  • 경상북도 영덕군과 포항시에 위치한 해수욕장 주변에서 생활하수나 생활쓰레기 등의 환경조건이 해변모래에 서식하는 미생물 분포에 어떤 영향을 미치는지를 조사하기 위하여, 10월 중순에 12곳의 해변모래를 채취하여 16S rRNA 유전자를 pyrosequencing 방법으로 분석하였다. 해수 부근의 청결한 모래에는 Acidobacteria, 담수 부근의 모래에는 Proteobacteria, 생활하수 부근의 모래에는 Cyanobacteria, 해변공원 부근의 모래에는 Bacteroidetes 그룹이 20-90% 정도로 높게 분포하였고, 생활하수가 해수와 합해지는 해변모래에서는 Actinobacteria, Chlorobi, Deferribacteres, Deinococcus-thermus, Firmicutes, Gemmatimonadetes, Nitrospirae, Verrucomicrobia 그룹이 1-5% 정도로 낮게 분포하였다.

Enzymatic Synthesis of Resveratrol α-Glucoside by Amylosucrase of Deinococcus geothermalis

  • Moon, Keumok;Lee, Seola;Park, Hyunsu;Cha, Jaeho
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권12호
    • /
    • pp.1692-1700
    • /
    • 2021
  • Glycosylation of resveratrol was carried out by using the amylosucrase of Deinococcus geothermalis, and the glycosylated products were tested for their solubility, chemical stability, and biological activities. We synthesized and identified these two major glycosylated products as resveratrol-4'-O-α-glucoside and resveratrol-3-O-α-glucoside by nuclear magnetic resonance analysis with a ratio of 5:1. The water solubilities of the two resveratrol-α-glucoside isomers (α-piceid isomers) were approximately 3.6 and 13.5 times higher than that of β-piceid and resveratrol, respectively, and they were also highly stable in buffered solutions. The antioxidant activity of the α-piceid isomers, examined by radical scavenging capability, showed it to be initially lower than that of resveratrol, but as time passed, the α-piceid isomers' activity reached a level similar to that of resveratrol. The α-piceid isomers also showed better inhibitory activity against tyrosinase and melanin synthesis in B16F10 melanoma cells than β-piceid. The cellular uptake of the α-piceid isomers, which was assessed by ultra-performance liquid chromatography (UPLC) analysis of the cell-free extracts of B16F10 melanoma cells, demonstrated that the glycosylated form of resveratrol was gradually converted to resveratrol inside the cells. These results indicate that the enzymatic glycosylation of resveratrol could be a useful method for enhancing the bioavailability of resveratrol.

Synthesis of α-cichoriin Using Deinococcus geothermalis Amylosucrase and Its Antiproliferative Effect

  • Moon, Keumok;Park, Hyun Su;Lee, Areum;Min, Jugyeong;Park, Yunjung;Cha, Jaeho
    • 한국미생물·생명공학회지
    • /
    • 제50권2호
    • /
    • pp.218-227
    • /
    • 2022
  • Glycosylation of aesculetin was performed using amylosucrase from the hyperthermophilic bacterium Deinococcus geothermalis DSM 11300 to improve the solubility and biological activity of aesculetin. A newly synthesized aesculetin glycoside was identified as α-cichoriin (aesculetin 7-α-D-glucoside) by nuclear magnetic resonance analysis. The solubility of α-cichoriin was 11 times higher than that of aesculetin because of the attached glucose moiety. Aesculetin and α-cichoriin had no significant effect on the proliferation of normal cells, such as RAW 264.7, but they showed a cell proliferation inhibitory effect on B16F10 melanoma cells. Unlike treatment with aesculetin and α-cichoriin, aesculin (aesculetin 6-β-D-glucoside) showed no antiproliferative activity in B16F10 cells. Based on the molecular structures of aesculin and α-cichoriin, the position where glucose binds to aesculetin and the anomeric configuration between glucose and aesculetin are thought to be important for exerting an antiproliferative effect on the B16F10 cell line. Based on these results, we propose that α-cichoriin, the α-glycosylated form of aesculetin, may serve as a model for developing phytochemical analogs with therapeutic potential for the treatment of diseases associated with tumor cell proliferation without cytotoxicity to normal cells.

재조합 아밀로수크라아제를 이용한 효율적인 폴리페놀 배당체의 합성 (Enzymatic Synthesis of Polyphenol Glycosides by Amylosucrase)

  • 박현수;최경화;박영돈;박천석;차재호
    • 생명과학회지
    • /
    • 제21권11호
    • /
    • pp.1631-1635
    • /
    • 2011
  • 재조합 아밀로수크라아제의 폴리페놀 배당체를 합성하는 능력을 검사하였다. 이 효소의 효소작용 특성에 근거하여 설탕을 기질로 사용하였으며 21 종류의 각기 다른 폴리페놀 화합물들이 수용체로 사용되었다. 당 전이 반응은 사용한 폴리페놀에 따라 하나 또는 두 개의 주요 폴리페놀 배당체를 합성하였다. 합성된 폴리페놀 배당체들은 박막 크로마토그래피법을 이용하여 확인되었고, 새로이 합성된 배당체의 구조는 당 전이 작용 특성에 근거하여 예측되었다. 수용체로 가능한 폴리페놀의 구조적 특징들이 평가되었으며, 이러한 결과는 Deinococcus geothermalis 유래 아밀로수크라아제가 식품, 화장품, 및 제약산업에서 높은 잠재성을 갖는 폴리페놀 배당체의 효소적 합성에 매우 효율적인 촉매로 활용될 수 있다는 것을 보여준다.