Browse > Article
http://dx.doi.org/10.48022/mbl.2203.03002

Synthesis of α-cichoriin Using Deinococcus geothermalis Amylosucrase and Its Antiproliferative Effect  

Moon, Keumok (Microbiological Resource Research Institute, Pusan National University)
Park, Hyun Su (Manufacturing Divisional Group, Celltrion, Inc.)
Lee, Areum (Department of Microbiology, Pusan National University)
Min, Jugyeong (Department of Microbiology, Pusan National University)
Park, Yunjung (Department of Microbiology, Pusan National University)
Cha, Jaeho (Microbiological Resource Research Institute, Pusan National University)
Publication Information
Microbiology and Biotechnology Letters / v.50, no.2, 2022 , pp. 218-227 More about this Journal
Abstract
Glycosylation of aesculetin was performed using amylosucrase from the hyperthermophilic bacterium Deinococcus geothermalis DSM 11300 to improve the solubility and biological activity of aesculetin. A newly synthesized aesculetin glycoside was identified as α-cichoriin (aesculetin 7-α-D-glucoside) by nuclear magnetic resonance analysis. The solubility of α-cichoriin was 11 times higher than that of aesculetin because of the attached glucose moiety. Aesculetin and α-cichoriin had no significant effect on the proliferation of normal cells, such as RAW 264.7, but they showed a cell proliferation inhibitory effect on B16F10 melanoma cells. Unlike treatment with aesculetin and α-cichoriin, aesculin (aesculetin 6-β-D-glucoside) showed no antiproliferative activity in B16F10 cells. Based on the molecular structures of aesculin and α-cichoriin, the position where glucose binds to aesculetin and the anomeric configuration between glucose and aesculetin are thought to be important for exerting an antiproliferative effect on the B16F10 cell line. Based on these results, we propose that α-cichoriin, the α-glycosylated form of aesculetin, may serve as a model for developing phytochemical analogs with therapeutic potential for the treatment of diseases associated with tumor cell proliferation without cytotoxicity to normal cells.
Keywords
Aesculetin; ${\alpha}-cichoriin$; amylosucrase; transglycosylation; antiproliferative activity;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Andersen-Ranberg J, Kongstad KT, Nafisi M, Staerk D, Okkels FT, Mortensen UH, et al. 2017. Synthesis of C-glucosylated octaketide anthraquinones in Nicotiana benthamiana by using a multispecies-based biosynthetic pathway. ChemBioChem 18: 1893-1897.   DOI
2 Chiang C-M, Wang T-Y, Wu J-Y, Zhang Y-R, Lin S-Y, Chang T-S. 2021. Production of new isoflavone diglucosides from glycosylation of 8-hydroxydaidzein by Deinococcus geothermalis amylosucrase. Fermentation 7: 232.   DOI
3 Cho HK, Kim HH, Seo DH, Jung JH, Park JH, Baek NI, et al. 2011. Biosynthesis of (+)-catechin glycosides using recombinant amylosucrase from Deinococcus geothermalis DSM 11300. Enzyme Microb. Technol. 49: 246-253.   DOI
4 Chen D, Sun L, Chen R, Xie K, Yang L, Dai J. 2016. Enzymatic synthesis of acylphloroglucinol 3-C-glucosides from 2-O-glucosides using a C-glycosyltransferase from Mangifera indica. Chem. Eur. J. 22: 5873-5877.   DOI
5 Hoffmeister D, Drager G, Ichinose K, Rohr J, Bechthold A. 2003. The C-glycosyltransferase UrdGT2 is unselective toward ᴰ- and ᴸ-configured nucleotide-bound rhodinoses. J. Am. Chem. Soc. 125: 4678-4679.   DOI
6 Funayama M, Arakawa H, Yamamoto R, Nishino T, Shin T, Murao S. 1995. Effects of α- and β-Arbutin on activity of tyrosinases from mushroom and mouse melanoma. Biosci. Biotech. Biochem. 59: 143-144.   DOI
7 Rha CS, Kim HG, Baek NI, Kim, DO, Park CS. 2020. Using amylosucrase for the controlled synthesis of novel isoquercitrin glycosides with different glycosidic linkages. J. Agric. Food Chem. 68: 13798-13805.   DOI
8 Ko JA, Ryu YB, Park T, Jeong HJ, Kim JH, Park SJ, et al. 2012. Enzymatic synthesis of puerarin glucosides using Leuconostoc dextransucrase. J. Microbiol. Biotechnol. 22: 1224-1229.   DOI
9 Riveiro ME, DeKimpe N, Moglioni A, Vazquez R, Monczor F, Shayo C, et al. 2010. Coumarins: old compounds with novel, promising therapeutic perspectives. Curr. Med. Chem. 17: 1325-1338.   DOI
10 Ito T, Fujimoto S, Suito F, Shimosaka M, Taguchi G. 2017. C-Glycosyltransferases catalyzing the formation of di-C-glucosyl flavonoids in citrus plants. Plant J. 91: 187-198.   DOI
11 Salem SM, Weidenbach S, Rohr J. 2017. Two cooperative glycosyltransferases are responsible for the sugar diversity of saquayamycins isolated from Streptomyces sp. KY 40-1. ACS Chem. Biol. 12: 2529-2534.   DOI
12 Seo DH, Yoo SH, Choi SJ, Kim YR, Park CS. 2020. Versatile biotechnological applications of amylosucrase, a novel glucosyltransferase. Food Sci. Biotechnol. 29: 1-16.   DOI
13 Rha CS, Kim ER, Kim YJ, Jung YS, Kim DO, Park CS. 2019. Simple and efficient production of highly soluble daidzin glycosides by amylosucrase from Deinococcus geothermalis. J. Agric. Food Chem. 67: 12824-12832.   DOI
14 Durr C, Hoffmeister D, Wohlert SE, Ichinose K, Weber M, von Mulert U, et al. 2004. The glycosyltransferase UrdGT2 catalyzes both C-and O-glycosidic sugar transfers. Angew. Chem. Int. Ed. 43: 2962-2965.   DOI
15 Moon YH, Lee JH, Ahn JS, Nam SH, Oh DK, Park DH, et al. 2006. Synthesis, structure analyses, and characterization of novel epigallocatechin gallate (EGCG) glycosides using the glucansucrase from Leuconostoc mesenteroides B-1299CB. J. Agric. Food Chem. 54: 1230-1237.   DOI
16 Lee SJ, Kim JC, Kim MJ, Kitaoka M, Park CS, Lee SY, et al. 1999. Transglycosylation of naringin by Bacillus stearothermophilus maltogenic amylase to give glycosylated naringin. J. Agric. Food Chem. 47: 3669-3674.   DOI
17 Moon YH, Lee JH, Jhon DY, Jun WJ, Kang SS, Sim J, et al. 2007. Synthesis and characterization of novel quercetin-α-ᴰ-glucopyranosides using glucansucrase from Leuconostoc mesenteroides. Enzyme Microb. Technol. 40: 1124-1129.   DOI
18 Marinova EM, Yanishlieva NV, Kostova IN. 1994. Antioxidative action of the ethanolic extract and some hydroxycoumarins of Fraxinus ornus bark. Food Chem. 51: 125-132.   DOI
19 Liang C, Ju W, Pei S, Tang Y, Xiao Y. 2017. Pharmacological activities and synthesis of esculetin and its derivatives: A minireview. Molecules 22: 387.   DOI
20 Kaneko T, Tahara S, Takabayashi F. 2007. Inhibitory effect of natural coumarin compounds, esculetin and esculin, on oxidative DNA damage and formation of aberrant crypt foci and tumors induced by 1,2-dimethylhydrazine in rat colons. Biol. Pharm. Bull. 30: 2052-2057.   DOI
21 Fylakatakidou KC, Hadjipavlou-Litina DJ, Litinas KE, Nicolaides DN. 2004. Natural and synthetic coumarin derivatives with anti-inflammatory/antioxidant activities. Curr. Pharm. Des. 10: 3813-3833.   DOI
22 Park S, Moon K, Park CS, Jung DH, Cha J. 2018. Synthesis of aesculetin and aesculin glycosides using engineered Escherichia coli expressing Neisseria polysaccharea amylosucrase. J. Microbiol. Biotechnol. 28: 566-570.   DOI
23 Chu CY, Tsai YY, Wang CJ, Lin WL, Tseng TH. 2001. Induction of apoptosis by esculetin in human leukemia cells. Eur. J. Pharmacol. 416: 25-32.   DOI
24 Kawaii S, Tomono Y, Ogawa K, Sugiura M, Yano M, Yoshizawa Y. 2001. The antiproliferative effect of coumarins on several cancer cell lines. Anticancer Res. 21: 917-924.
25 Al-Akhras MAH, Aljarrah K, Al-Khateeb H, Jaradat A, Al-Omari A, Al-Nasser A, et al. 2012. Introducing Cichorium Pumilum as a potential therapeutical agent against drug-induced benign breast tumor in rats. Electromagn. Biol. Med. 31: 299-309.   DOI
26 Hao B, Caulfield JC, Hamilton ML, Pickett JA, Midega CAO, Khan ZR, et al. 2016. Biosynthesis of natural and novel C-glycosylflavones utilizing recombinant Oryza sativa C-glycosyltransferase (OsCGT) and Desmodium incanum root proteins. Phytochemistry 125: 73-87.   DOI
27 Xia YL, Liang SC, Zhu LL, Ge GB, He GY, Ning J, et al. 2014. Identification and characterization of human UDP-glucuronosyltransferases responsible for the glucuronidation of fraxetin. Drug Metab. Pharmacokinet. 29: 135-140.   DOI
28 Zhang SF, Ma JH, Chen SR, Li HY, Xin JF. 2007. Improved synthesis technics of 6,7-dimethoxy coumarin. J. Hebei Univ. Sci. Technol. 28: 24-25.   DOI
29 Nemoto T, Ohshima T, Shibasaki M. 2003. Enantioselective total syntheses of (+)-decursin and related natural compounds using catalytic asymmetric epoxidation of an enon. Tetrahedron 59: 6889-6897.   DOI
30 Lim EK. 2005. Plant glycosyltransferases: their potential as novel biocatalysts. Chem. Eur. J. 11: 5486-5494.   DOI
31 Wang X, Li C, Zhou C, Li J, Zhang Y. 2017. Molecular characterization of the C-glucosylation for puerarin biosynthesis in Pueraria lobata. Plant J. 90: 535-546.   DOI
32 Chen D, Chen R, Wang R, Li J, Xie K, Bian C, et al. 2015. Probing the catalytic promiscuity of a regio- and stereospecific C-glycosyltransferase from Mangifera indica. J. Angew. Chem. Int. Ed. 54: 12678-12682.   DOI
33 Yamada M, Tanabe F, Arai N, Mitsuzumi H, Miwa Y, Kubota M, et al. 2006. Bioavailability of glucosyl hesperidin in rats. Biosci. Biotechnol. Biochem. 70: 1386-1394.   DOI
34 Pan L, Huang YW, Guh JH, Chang YL, Peng CY, Teng CM. 2003. Esculetin inhibits Ras-mediated cell proliferation and attenuates vascular restenosis following angioplasty in rats. Biochem. Pharmacol. 65: 1897-1905.   DOI
35 Kawase M, Sakagami H, Hashimoto K, Tani S, Hauer H, Chatterjee SS. 2003. Structure-cytotoxic activity relationships of simple hydroxylated coumarins. Anticancer Res. 23: 3243-3246.
36 Acero JL, Benitez JF, Real FJ, Leal AI, Sordo A. 2005. Oxidation of esculetin, a model pollutant present in cork processing wastewaters, by chemical methods. Ozone: Sci. Eng. 27: 317-326.   DOI
37 Hollman PC, Bijsman MN, van Gameren Y, Cnossen EP, de Vries JH, Katan MB. 1999. The sugar moiety is a major determinant of the absorption of dietary flavonoid glycosides in man. Free Radic. Res. 32: 569-573.
38 Jiang JR, Yuan S, Ding JF, Zhu SC, Xu HD, Chen T, et al. 2008. Conversion of puerarin into its 7-O-glycoside derivatives by Micro-bacterium oxydans (CGMCC 1788) to improve its water solubility and pharmacokinetic properties. Appl. Microbiol. Biotechnol. 81: 647-657.   DOI
39 Marshall ME, Butler K, Fried A. 1991. Phase I evaluation of coumarin (1,2-benzopyrone) and cimetidine in patients with advanced malignancies. Mol. Biother. 3: 170-178.
40 Mohler JL, Gomella LG, Crawford ED, Glode LM, Zippe CD, Fair WR, et al. 1992. Phase II evaluation of coumarin (1,2-benzopyrone) in metastatic prostatic carcinoma. Prostate 20: 123-131.   DOI
41 Thornes RD, Daly L, Lynch G, Breslin B, Browne H, Browne GY, et al. 1994. Treatment with coumarin to prevent or delay recurrence of malignant melanoma. J. Cancer Res. Clin. Oncol. 120: 32-34.
42 Egan D, O'Kennedy R, Moran E, Cox D, Prosser E, Thornes RD. 1990. The pharmacology, metabolism, analysis, and applications of coumarin and coumarin-related compounds. Drug Metab. Res. 22: 503-529.   DOI
43 Bull JA, Lujan C, Hutchings MG, Peter Q. 2009. Application of the BHQ benzannulation reaction to the synthesis of benzo-fused coumarins. Tetrahedron Lett. 50: 3617-3620.   DOI
44 Finn GJ, Kenealy E, Creaven BS, Egan DA. 2002. In vitro cytotoxic potential and mechanism of action of selected coumarins, using human renal cell lines. Cancer Lett. 183: 61-68.   DOI
45 Lacy A, O'Kennedy R. 2004. Studies on coumarins and coumarin-related compounds to determine their therapeutic role in the treatment of cancer. Curr. Pharm. Des. 10: 3797-3811.   DOI
46 Liang SC, Ge GB, Liu HX, Zhang YY, Wang LM, Zhang JW, et al. 2010. Identification and characterization of human UDP-glucuronosyltransferases responsible for the in vitro glucuronidation of daphnetin. Drug Metab. Dispos. 38: 973-980.   DOI