Browse > Article
http://dx.doi.org/10.4014/jmb.1507.07008

The Site-Directed A184S Mutation in the HTH Domain of the Global Regulator IrrE Enhances Deinococcus radiodurans R1 Tolerance to UV Radiation and MMC Shock  

Zhang, Chen (Biotechnology Research Institute, Chinese Academy of Agricultural Sciences)
Zhou, Zhengfu (Biotechnology Research Institute, Chinese Academy of Agricultural Sciences)
Zhang, Wei (Biotechnology Research Institute, Chinese Academy of Agricultural Sciences)
Chen, Zhen (College of Biological Sciences, China Agricultural University)
Song, Yuan (College of Biological Sciences, China Agricultural University)
Lu, Wei (Biotechnology Research Institute, Chinese Academy of Agricultural Sciences)
Lin, Min (Biotechnology Research Institute, Chinese Academy of Agricultural Sciences)
Chen, Ming (Biotechnology Research Institute, Chinese Academy of Agricultural Sciences)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.12, 2015 , pp. 2125-2134 More about this Journal
Abstract
IrrE is a highly conserved global regulator in the Deinococcus genus and contributes to survival from high doses of UV radiation, ionizing radiation, and desiccation. Drad-IrrE and Dgob-IrrE from Deinococcus radiodurans and Deinococcus gobiensis I-0 each share 66% sequence identity. However, Dgob-IrrE showed a stronger protection phenotype against UV radiation than Drad-IrrE in the D. radiodurans irrE-deletion mutant (ΔirrE), which may be due to amino acid residues differences around the DNA-binding HTH domain. Site-directed mutagenesis was used to generate a Drad-IrrE A184S single mutant, which has been characterized and compared with the ΔirrE mutant complemented strain with Drad-irrE, designated ΔirrE-E. The effects of the A184S mutation following UV radiation and mitomycin C (MMC) shock were determined. The A184S mutant displayed significantly increased resistance to UV radiation and MMC shock. The corresponding A184 site in Dgob-IrrE was inversely mutated, generating the S131A mutant, which exhibited a loss of resistance against UV radiation, MMC shock, and desiccation. qPCR analysis revealed that critical genes in the DNA repair system, such as recA, pprA, uvrA, and ddrB, were remarkably induced after UV radiation and MMC shock in the ΔirrE-IE and A184S mutants. These data suggested that A184S improves the ability against UV radiation and MMC shock, providing new insights into the modification of IrrE. We speculated that the serine residue may determine the efficiency of DNA binding, leading to the increased expression of IrrE-dependent genes important for protection against DNA damage.
Keywords
D. radiodurans; IrrE; site-directed mutagenesis; UV radiation; MMC shock;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bentchikou E, Servant P, Coste G, Sommer S. 2010. A major role of the RecFOR pathway in DNA double-strand-break repair through ESDSA in Deinococcus radiodurans. PLos Genet. 6.   DOI
2 Battista JR, Earl AM, Park M-J. 1999. Why is Deinococcus radiodurans so resistant to ionizing radiation? Trends Microbiol. 7: 362-365.   DOI
3 Adachi M, Hirayama H, Shimizu R, Satoh K, Narumi I, Kuroki R. 2014. Interaction of double-stranded DNA with polymerized PprA protein from Deinococcus radiodurans. Protein Sci. 23: 1349-1358.   DOI
4 Chen T, Wang J, Zeng L, Li R, Li J, Chen Y, Lin Z. 2012. Significant rewiring of the transcriptome and proteome of an Escherichia coli strain harboring a tailored exogenous global regulator IrrE. PLoS One 7: e37126.   DOI
5 Chen T, Wang J, Yang R, Li J, Lin M, Lin Z. 2011. Laboratory-evolved mutants of an exogenous global regulator, IrrE from Deinococcus radiodurans, enhance stress tolerances of Escherichia coli. PLoS One 6: e16228.   DOI
6 Hua Y, Narumi I, Gao G, Tian B, Satoh K, Kitayama S, Shen B. 2003. PprI: a general switch responsible for extreme radioresistance of Deinococcus radiodurans. Biochem. Biophys. Res. Commun. 306: 354-360.   DOI
7 Ho YSJ, Burden LM, Hurley JH. 2000. Structure of the GAF domain, a ubiquitous signaling motif and a new class of cyclic GMP receptor. EMBO J. 19: 5288-5299.   DOI
8 Gouet P, Robert X, Courcelle E. 2003. ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res. 31: 3320-3323.   DOI
9 Eisen JA, Hanawalt PC. 1999. A phylogenomic study of DNA repair genes, proteins, and processes. Mutat. Res. DNA Repair 435: 171-213.   DOI
10 Earl AM, Mohundro MM, Mian IS, Battista JR. 2002. The IrrE protein of Deinococcus radiodurans R1 is a novel regulator of recA expression. J. Bacteriol. 184: 6216-6224.   DOI
11 DeLano WL. 2002. The PyMOL molecular graphics system. DeLano Scientific, CA.
12 Daly MJ, Minton KW. 1996. An alternative pathway of recombination of chromosomal fragments precedes recA-dependent recombination in the radioresistant bacterium Deinococcus radiodurans. J. Bacteriol. 178: 4461-4471.   DOI
13 Tawfik D. 2002. The Protein Protocols Handbook. Springer, NY.
14 Slade D, Radman M. 2011. Oxidative stress resistance in Deinococcus radiodurans. Microbiol. Mol. Biol. Rev. MMBR 75: 133-191.   DOI
15 Schwede T, Kopp J, Guex N, Peitsch MC. 2003. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res. 31: 3381-3385.   DOI
16 Rohs R, West SM, Sosinsky A, Liu P, Mann RS, Honig B. 2009. The role of DNA shape in protein-DNA recognition. Nature 461: 1248-1253.   DOI
17 Pan J, Wang J, Zhou Z, Yan Y, Zhang W, Lu W, et al. 2009. IrrE, a global regulator of extreme radiation resistance in Deinococcus radiodurans, enhances salt tolerance in Escherichia coli and Brassica napus. PLoS One 4: e4422.   DOI
18 Kota S, Misra HS. 2006. PprA: a protein implicated in radioresistance of Deinococcus radiodurans stimulates catalase activity in Escherichia coli. Appl. Microbiol. Biotechnol. 72: 790-796.   DOI
19 Ludanyi M, Blanchard L, Dulermo R, Brandelet G, Bellanger L, Pignol D, et al. 2014. Radiation response in Deinococcus deserti: IrrE is a metalloprotease that cleaves repressor protein DdrO. Mol. Microbiol. 94: 434-449.   DOI
20 Lu H, Chen H, Xu G, Shah AM-U-H, Hua Y. 2012. DNA binding is essential for PprI function in response to radiation damage in Deinococcus radiodurans. DNA Repair 11: 139-145.   DOI
21 Kota S, Charaka VK, Ringgaard S, Waldor MK, Misra HS. 2014. PprA contributes to Deinococcus radiodurans resistance to nalidixic acid, genome maintenance after DNA damage and interacts with deinococcal topoisomerases. PLoS One 9: e85288.   DOI
22 Zahradka K, Slade D, Bailone A, Sommer S, Averbeck D, Petranovic M, et al. 2006. Reassembly of shattered chromosomes in Deinococcus radiodurans. Nature 443: 569-573.
23 Yuan M, Zhang W, Dai S, Wu J, Wang Y, Tao T, et al. 2009. Deinococcus gobiensis sp. nov., an extremely radiation-resistant bacterium. Int. J. Syst. Evol. Microbiol. 59: 1513-1517.   DOI
24 Xu G, Lu H, Wang L, Chen H, Xu Z, Hu Y, et al. 2010. DdrB stimulates single-stranded DNA annealing and facilitates RecA-independent DNA repair in Deinococcus radiodurans. DNA Repair 9: 805-812.   DOI
25 White O, Eisen JA, Heidelberg JF, Hickey EK, Peterson JD, Dodson RJ, et al. 1999. Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 286: 1571-1577.   DOI
26 Truglio JJ, Croteau DL, Van Houten B, Kisker C. 2006. Prokaryotic nucleotide excision repair: the UvrABC system. Chem. Rev. 106: 233-252.   DOI
27 Vujicic-Zagar A, Dulermo R, Le Gorrec M, Vannier F, Servant P, Sommer S, et al. 2009. Crystal structure of the IrrE protein, a central regulator of DNA damage repair in Deinococcaceae. J. Mol. Biol. 386: 704-716.   DOI