• Title/Summary/Keyword: Deformation Gradient Tensor

Search Result 8, Processing Time 0.024 seconds

A New Interpretation on the Additive and Multiplicative Decompositions of Elastic-Plasmic Deformation Gradient Tensor (탄소성 변형구배텐서의 가산분해와 곱분해에 대한 새로운 역학적 이해)

  • Y.Y. Nam;J.G. Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.3
    • /
    • pp.94-102
    • /
    • 1996
  • An interpretation for the additive and multiplicative decomposition theory of the deformation gradient tensor in finite deformation problems is presented. the conventional methods have not provided the additive deformation velocity gradient. Moreover the plastic deformation velocity gradients are not free from elastic deformations. In this paper, a modified multiplicative decomposition is introduced with the assumption of coaxial plastic deformation velocity gradient. This strategy well gives the additive deformation velocity gradient in which the plastic deformation velocity gradient is not affect4d by the elastic deformation.

  • PDF

MPM-Based Angular Animation of Particles using Polar Decomposition Theory (극 분해 이론을 활용한 MPM기반의 입자 회전 애니메이션)

  • Song, Chang-yong;Kim, Ki-hoon;Kim, Sun-jeong;Kim, Changhun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.28 no.4
    • /
    • pp.13-22
    • /
    • 2022
  • In this paper, we propose a single framework based on the MPM(Material Point Method) that can represent the dynamic angular motion of the elementary particle unit. In this study, the particles can have various shapes while also describing linear and angular motion. As a result, unlike other particle-based simulations, which only represent linear movements of spherical (e.g. Circle, Sphere) particles, it is possible to express the visually dynamic motion of them. The proposed framework utilizes MPM, due to the fact that rotational motion can be decomposed and derived from large deformation. During the integration process of the presented technique, a deformation gradient tensor is decomposed by polar decomposition theory for extracting rotation tensor. By applying this together with the linear motion of each particle, as a result, it is possible to simultaneously express the angluar and linear motion of the particle itself. To verify the proposed method, we show the simulation of rotating particles scattering in the wind field, and the interaction(e.g. Collision) between a moving object and them by comparing the traditional MPM

대변형 초탄성 재료의 해석을 위한 무요소 적응기법

  • 전석기;정동원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.736-739
    • /
    • 1995
  • The meshless adaptive method based on multiple scale analysis is developed to simulate large deformation problems. In the procedure, new particles are simply added to the orginal particle distribution because meshless methods do not require mesh structures in the formulations. The high scale component of the approximated solution detects the localized region where a refinement is needed. The high scale component of the second invariant od Green-Lagrangian strain tensor is suggested as the new high gradient detector for adaptive procedures. The feasibility of the proposed theory is demonstrated by a numerical experiment for the large deformation of hyperelastic materials.

  • PDF

Effect of length scale parameters on transversely isotropic thermoelastic medium using new modified couple stress theory

  • Lata, Parveen;Kaur, Harpreet
    • Structural Engineering and Mechanics
    • /
    • v.76 no.1
    • /
    • pp.17-26
    • /
    • 2020
  • The objective of this paper is to study the deformation in transversely isotropic thermoelastic solid using new modified couple stress theory subjected to ramp-type thermal source and without energy dissipation. This theory contains three material length scale parameters which can determine the size effects. The couple stress constitutive relationships are introduced for transversely isotropic thermoelastic solid, in which the curvature (rotation gradient) tensor is asymmetric and the couple stress moment tensor is symmetric. Laplace and Fourier transform technique is applied to obtain the solutions of the governing equations. The displacement components, stress components, temperature change and couple stress are obtained in the transformed domain. A numerical inversion technique has been used to obtain the solutions in the physical domain. The effects of length scale parameters are depicted graphically on the resulted quantities. Numerical results show that the proposed model can capture the scale effects of microstructures.

Prediction of the Diffusion Controlled Boundary Layer Transition with an Adaptive Grid (적응격자계를 이용한 경계층의 확산제어천이 예측)

  • Cho J. R.
    • Journal of computational fluids engineering
    • /
    • v.6 no.4
    • /
    • pp.15-25
    • /
    • 2001
  • Numerical prediction of the diffusion controlled transition in a turbine gas pass is important because it can change the local heat transfer rate over a turbine blade as much as three times. In this study, the gas flow over turbine blade is simplified to the flat plate boundary layer, and an adaptive grid scheme redistributing grid points within the computation domain is proposed with a great emphasis on the construction of the grid control function. The function is sensitized to the second invariant of the mean strain tensor, its spatial gradient, and the interaction of pressure gradient and flow deformation. The transition process is assumed to be described with a κ-ε turbulence model. An elliptic solver is employed to integrate governing equations. Numerical results show that the proposed adaptive grid scheme is very effective in obtaining grid independent numerical solution with a very low grid number. It is expected that present scheme is helpful in predicting actual flow within a turbine to improve computation efficiency.

  • PDF

Treatment of Contact between Roll/Roll and Roll/Strip for Rolling Process Simulation (압연공정해석을 위한 판과 롤의 접촉 경계면 처리)

  • 김태효;황상무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.156-159
    • /
    • 2003
  • Surface normal vector and surface velocity are very important parameters to simulate rolling processes precisely. In this study, Local displacement functions are constructed for each node on the contact surface and parameters are found by the least square fitting of displacement on the neighbor nodes. Deformation gradient tensor is calculated from the displacement function and surface normal vector and velocity also can be derived. Flat rolling simulation model is presented on the basis of the suggested contact scheme. Series of rolling process simulation are carried out and the results are compared with the experiments.

  • PDF

Modeling and numerical simulation of electrostrictive materials and structures

  • Pechstein, Astrid;Krommer, Michael;Humer, Alexander
    • Smart Structures and Systems
    • /
    • v.30 no.3
    • /
    • pp.221-237
    • /
    • 2022
  • This paper is concerned with nonlinear modeling and efficient numerical simulation of electrostrictive materials and structures. Two types of such materials are considered: relaxor ferroelectric ceramics and electrostrictive polymers. For ceramics, a geometrically linear formulation is developed, whereas polymers are studied in a geometrically nonlinear regime. In the paper, we focus on constitutive modeling first. For the reversible constitutive response under consideration, we introduce the augmented Helmholtz free energy, which is composed of a purely elastic part, a dielectric part and an augmentation term. For the elastic part, we involve an additive decomposition of the strain tensor into an elastic strain and an electrostrictive eigenstrain, which depends on the polarization of the material. In the geometrically nonlinear case, a corresponding multiplicative decomposition of the deformation gradient tensor replaces the additive strain decomposition used in the geometrically linear formulation. For the dielectric part, we first introduce the internal energy, to which a Legendre transformation is applied to compute the free energy. The augmentation term accounts for the contribution from vacuum to the energy. In our formulation, the augmented free energy depends not only on the strain and the electric field, but also on the polarization and an internal polarization; the latter two are internal variables. With the constitutive framework established, a Finite Element implementation is briefly discussed. We use high-order elements for the discretization of the independent variables, which include also the internal variables and, in case the material is assumed incompressible, the hydrostatic pressure, which is introduced as a Lagrange multiplier. The elements are implemented in the open source code Netgen/NGSolve. Finally, example problems are solved for both, relaxor ferroelectric ceramics and electrostrictive polymers. We focus on thin plate-type structures to show the efficiency of the numerical scheme and its applicability to thin electrostrictive structures.

Compressive and failure behaviour of composite egg-box panel using non-orthogonal constitutive model (비 직교 물성 모델을 이용한 복합재료 계란판의 압축거동 및 파손)

  • Hahn, Young-Won;Chang, Seung-Hwan;Ryu, Yong-Mun;Cheon, Seong-Sik
    • Composites Research
    • /
    • v.22 no.4
    • /
    • pp.20-26
    • /
    • 2009
  • In the current study, thermoforming and compression analysis were carried out for the woven composite egg-box panel with the non-orthogonal constitutive material model, which is proposed by Xue et al. The material model is implemented in commercial engineering software, LS-DYNA, with a user subroutine. Directional properties in non-orthogonal coordinates are determinedusing the deformation gradient tensor and the material modulus matrix in local coordinate is updated at eaeh corresponding time step. After the implemented non-orthogonal constitutive model is verified by the bias extension test, the egg-box panel simulations are performed. The egg-box panel simulations are divided into two categories: thermoforming (draping) and crushing. The finite element model for crushing analysiscan be obtained using the displacement result of thermoforming process.