DOI QR코드

DOI QR Code

Compressive and failure behaviour of composite egg-box panel using non-orthogonal constitutive model

비 직교 물성 모델을 이용한 복합재료 계란판의 압축거동 및 파손

  • 한영원 ;
  • 장승환 (중앙대학교 공과대학 기계공학부) ;
  • 유용문 (자동차부품연구원, 소재공정연구센터) ;
  • 전성식 (국립공주대학교 공과대학 기계자동차공학부)
  • Published : 2009.08.31

Abstract

In the current study, thermoforming and compression analysis were carried out for the woven composite egg-box panel with the non-orthogonal constitutive material model, which is proposed by Xue et al. The material model is implemented in commercial engineering software, LS-DYNA, with a user subroutine. Directional properties in non-orthogonal coordinates are determinedusing the deformation gradient tensor and the material modulus matrix in local coordinate is updated at eaeh corresponding time step. After the implemented non-orthogonal constitutive model is verified by the bias extension test, the egg-box panel simulations are performed. The egg-box panel simulations are divided into two categories: thermoforming (draping) and crushing. The finite element model for crushing analysiscan be obtained using the displacement result of thermoforming process.

본 연구에서는 직조섬유복합재료를 이용한 계란판 모양의 시편에 대한 드래이핑 공정과 압축 해석을 비직교성 재료 모델을 이용하여 수행하였다. 비 직교 재료 구성 모델은 Xue 등이 2003년에 발표한 것을 상용 프로그램인 LS-DYNA에서 제공하는 사용자 부프로그램 (user subroutine)을 이용하여 본 연구에 적용하였다. 비 직교 재료 구성 모델에서 빙향성은 변형 기울기 텐서를 이용하여 계산하였고, 각 단계마다 재료 물성 행렬을 갱신하였다. 비 직교 물성 모델은 바이어스 인장 실험 결과와 비교 검증을 한 후에 계란 판 성형에 적용하였다. 계란 판 해석을 위해 본 연구에서는 열 성형 공정 (드래이핑)과 압축 해석을 수행하였다. 압축 해석을 위한 유한요소 모델은 드래이핑 해석으로부터 얻은 유한요소결과를 이용하여 구축하였다.

Keywords

References

  1. 전성식, "통계석 유한요소모델을 이용한 발포된 금속기지 복힘재료의 인장특성," 한국복합재료학회지, 제17 권, 2004, pp. 34-39
  2. Zupan, M., Chen, C. and Fleck, N.A., "The Plastic Collapse and Energy Absorption Capacity of Egg-box Panels," Internalional Journal of Mechanical Sciences, Vol. 45, 2003 , pp. 851-871 https://doi.org/10.1016/S0020-7403(03)00136-X
  3. Deshpande, V.S. and Fleck, N.A "Energy Absorption of an Egg-box Material," Journal of the Mechaniιs and Physics of Solids, Vol.51 , 2003, pp. 187-208 https://doi.org/10.1016/S0022-5096(02)00052-2
  4. Potter, K.D. "The Influence of Accuratε Stretch Data for Reinforcements on the Production of Complex Structural Mouldings: Part 1. Deformation of Aligned Sheets and Fabrics," Composites, Vol. 10, 1979, pp. 161-167 https://doi.org/10.1016/0010-4361(79)90291-X
  5. Pottcr, K.D., "The Influence of Accurate Stretch Data for Reinforcements on the Production of Complex Structural Mouldings," Part 2. Deformation of Random Mats, Composites, Vol. 10, pp. 168-173 https://doi.org/10.1016/0010-4361(79)90292-1
  6. Sharma, S.B. and Sutcliffe, M.P.F. , "A Simplified Finite Element Model for Draping of Woven Material," Composites: Part A, Vol. 35, 2004, pp. 637-643 https://doi.org/10.1016/j.compositesa.2004.02.013
  7. Sharma, S.B, Sutcliffe, M.P.F. and Lnang, S.H., "Charactereisation of Material Properties for Draping of Dry Woven Composite Material," Composiles Part A, Vol. 34, 2003, pp. 1167-1175 https://doi.org/10.1016/j.compositesa.2003.09.001
  8. Prodromou, A.G. and Chen, J., "On the Relationship Betwεen Shcar Angle and Wrinkling of Textilc Composite Preforms," Composites Part A, Vol. 28, 1997, pp. 491-503 https://doi.org/10.1016/S1359-835X(96)00150-9
  9. Robertson, R.E., Hsiue, E.S., Sickafus, E.N. and Yeh, G.S.Y, "Fiber Rearrangemcnts during the Molding of Continuous Fiber Composites. I. Flat Cloth to a Hcmisphere," Polymcr Composiles, Vol. 2, 1981. pp. 126-131 https://doi.org/10.1002/pc.750020309
  10. Rozant, O., Bourban, P.-E. and Manson, J.-A.E., "Drapability of Dry Textile Fabric for Stampablc Thermoplastic Preforms," Composites Part A, Vol. 31 , 2000. pp. 1167-1177 https://doi.org/10.1016/S1359-835X(00)00100-7
  11. Mohammed, U., Lekakou, C., Dong, L. and Bader, M.G., "Shear Deformation and Micromεchanics of Woven Fabrics, Compoposites Part A, Vol. 31 , 2000. pp. 299-308 https://doi.org/10.1016/S1359-835X(99)00081-0
  12. Buet-Gautier, K. and Boisse, P., "Experimental Analysis and ModeIing of Biaxial Mechanical Behavior of Woven Composite Reinforcements," Experimental mechanics, Vol 41, 2001. pp. 260-269 https://doi.org/10.1007/BF02323143
  13. LAunay,J., Hivet, G., Duong. A. V. and Boisse, P., "Experimental AnaIysis of the lnfluencε of Tensions on ln-plane Shear Behavior of Woven Composite Reinforcements," Composites Science and Technology, 68, 2008. pp. 506-515 https://doi.org/10.1016/j.compscitech.2007.06.021
  14. Zhu, B., Yu, T.X. and Tao, X.M., "Large Defornation and Slippage Mechanism of Plain Woven Composite in Bias Extension," Composites Part A, Vol. 38, 2007. pp. 1821-1828 https://doi.org/10.1016/j.compositesa.2007.04.009
  15. Shahkarami, A. and Vaziri, R., "A Continuum Shell Finite Element Model for Impact Simulation of Woven Fabrics," International Journal of lmpact Engineering, Vol. 34, 2007. pp. 104-119 https://doi.org/10.1016/j.ijimpeng.2006.06.010
  16. Yu, W.R., Pourboghrat,, F., Chung, K., Zampaloni, M and Kang, T.J., "Non-orthogonal Constitutive Equation for Woven Fabric Reinforced Thennoplastic Composites," Composites Part A, Vol. 33, 2002. pp. 1095-1105 https://doi.org/10.1016/S1359-835X(02)00053-2
  17. Ivanov, l.and Tabiei, A., "Three-dimensional Computational Micro-mechanical Model for Woven Fabric Composites," Composite Structures, Vol. 54, 2001. pp. 489-496 https://doi.org/10.1016/S0263-8223(01)00121-0
  18. Dong, L., Lekakou, C. and Bader, M.G., "Solid-mechanics Finite Element Simulations of the Draping of Fabrics:a Sensitivity Analysis," Composites Part A, Vol. 31 , 2000 pp. 639-652 https://doi.org/10.1016/S1359-835X(00)00046-4
  19. Daniel, I.M., Luo, J.-J. and Schubel, P.M., "Three-dimensional Characterization of Textile Composites," Composites Part B, Vol. 39, 2008. pp. 13-19 https://doi.org/10.1016/j.compositesb.2007.02.002
  20. Hamila, N. and Boisse, P., "A Meso-macro Three Node Finite Element for Draping of Textile Composite Prefonns," Applied composite materials, Vol. 14, 2007. pp. 235-250 https://doi.org/10.1007/s10443-007-9043-1
  21. Xue, P. Peng, X. and Cao, J. "A Non-orthogonal Constitutive Model for Characterizing Woven Composites," Composites Part A, Vol. 34, 2003, pp. 183-193 https://doi.org/10.1016/S1359-835X(02)00052-0
  22. Peng, X.Q. and Cao, J. , "A Continuum Mechanics-based Non-orthogonal Constitutive Model for Woven Composite Fabrics," Composites Part A, Vol. 36, 2005. pp. 859-874 https://doi.org/10.1016/j.compositesa.2004.08.008
  23. Lee, W., Cao, J., Chen, J. and Sherwood, J.A., "Numerical Analysis on Double Dome Stretching Tests of Woven Composites," The 10th ESAFORM Conference, Zaragoza, Spain, 2007. pp. 1052-1057
  24. Chung, J.G., Chang, S.H. and Sutcliffe, M.P.F., "Defonnation and Energy Absorption of Composite Egg-box Panels," Composites Science and Technology, Vol. 67, 2007, pp 2342-2349 https://doi.org/10.1016/j.compscitech.2007.01.020
  25. 강재훈, 장승환,"직물 복합재료의 드레이핑 미소 거동관찰:사진틀 전단실험," 한국복합재료학회지, 제18권, 2005, pp13-19
  26. 김용수, 장승환, "평직 탄소섬유 복합재료-고분자 포움 샌드 위치 구조의 성형중 미소변형에 관한 연구," 한국복합재료학회지, 제17 권, 2004, pp. 28-36
  27. 정지규, 장승환, "직물 복합재료 계란판의 압축특성과 에너지 흡수율," 대한기계학회논문집A, 제30권, 2006, pp. 1603-1610 https://doi.org/10.3795/KSME-A.2006.30.12.1603