• Title/Summary/Keyword: Deep Learning Neural Networks

Search Result 716, Processing Time 0.02 seconds

Interworking technology of neural network and data among deep learning frameworks

  • Park, Jaebok;Yoo, Seungmok;Yoon, Seokjin;Lee, Kyunghee;Cho, Changsik
    • ETRI Journal
    • /
    • v.41 no.6
    • /
    • pp.760-770
    • /
    • 2019
  • Based on the growing demand for neural network technologies, various neural network inference engines are being developed. However, each inference engine has its own neural network storage format. There is a growing demand for standardization to solve this problem. This study presents interworking techniques for ensuring the compatibility of neural networks and data among the various deep learning frameworks. The proposed technique standardizes the graphic expression grammar and learning data storage format using the Neural Network Exchange Format (NNEF) of Khronos. The proposed converter includes a lexical, syntax, and parser. This NNEF parser converts neural network information into a parsing tree and quantizes data. To validate the proposed system, we verified that MNIST is immediately executed by importing AlexNet's neural network and learned data. Therefore, this study contributes an efficient design technique for a converter that can execute a neural network and learned data in various frameworks regardless of the storage format of each framework.

A Review of 3D Object Tracking Methods Using Deep Learning (딥러닝 기술을 이용한 3차원 객체 추적 기술 리뷰)

  • Park, Hanhoon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.1
    • /
    • pp.30-37
    • /
    • 2021
  • Accurate 3D object tracking with camera images is a key enabling technology for augmented reality applications. Motivated by the impressive success of convolutional neural networks (CNNs) in computer vision tasks such as image classification, object detection, image segmentation, recent studies for 3D object tracking have focused on leveraging deep learning. In this paper, we review deep learning approaches for 3D object tracking. We describe key methods in this field and discuss potential future research directions.

Deep learning-based scalable and robust channel estimator for wireless cellular networks

  • Anseok Lee;Yongjin Kwon;Hanjun Park;Heesoo Lee
    • ETRI Journal
    • /
    • v.44 no.6
    • /
    • pp.915-924
    • /
    • 2022
  • In this paper, we present a two-stage scalable channel estimator (TSCE), a deep learning (DL)-based scalable, and robust channel estimator for wireless cellular networks, which is made up of two DL networks to efficiently support different resource allocation sizes and reference signal configurations. Both networks use the transformer, one of cutting-edge neural network architecture, as a backbone for accurate estimation. For computation-efficient global feature extractions, we propose using window and window averaging-based self-attentions. Our results show that TSCE learns wireless propagation channels correctly and outperforms both traditional estimators and baseline DL-based estimators. Additionally, scalability and robustness evaluations are performed, revealing that TSCE is more robust in various environments than the baseline DL-based estimators.

Improving Performance of Human Action Recognition on Accelerometer Data (가속도 센서 데이터 기반의 행동 인식 모델 성능 향상 기법)

  • Nam, Jung-Woo;Kim, Jin-Heon
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.523-528
    • /
    • 2020
  • With a widespread of sensor-rich mobile devices, the analysis of human activities becomes more general and simpler than ever before. In this paper, we propose two deep neural networks that efficiently and accurately perform human activity recognition (HAR) using tri-axial accelerometers. In combination with powerful modern deep learning techniques like batch normalization and LSTM networks, our model outperforms baseline approaches and establishes state-of-the-art results on WISDM dataset.

A Study on the Gender and Age Classification of Speech Data Using CNN (CNN을 이용한 음성 데이터 성별 및 연령 분류 기술 연구)

  • Park, Dae-Seo;Bang, Joon-Il;Kim, Hwa-Jong;Ko, Young-Jun
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.11
    • /
    • pp.11-21
    • /
    • 2018
  • Research is carried out to categorize voices using Deep Learning technology. The study examines neural network-based sound classification studies and suggests improved neural networks for voice classification. Related studies studied urban data classification. However, related studies showed poor performance in shallow neural network. Therefore, in this paper the first preprocess voice data and extract feature value. Next, Categorize the voice by entering the feature value into previous sound classification network and proposed neural network. Finally, compare and evaluate classification performance of the two neural networks. The neural network of this paper is organized deeper and wider so that learning is better done. Performance results showed that 84.8 percent of related studies neural networks and 91.4 percent of the proposed neural networks. The proposed neural network was about 6 percent high.

A Comparative Performance Analysis of Spark-Based Distributed Deep-Learning Frameworks (스파크 기반 딥 러닝 분산 프레임워크 성능 비교 분석)

  • Jang, Jaehee;Park, Jaehong;Kim, Hanjoo;Yoon, Sungroh
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.5
    • /
    • pp.299-303
    • /
    • 2017
  • By piling up hidden layers in artificial neural networks, deep learning is delivering outstanding performances for high-level abstraction problems such as object/speech recognition and natural language processing. Alternatively, deep-learning users often struggle with the tremendous amounts of time and resources that are required to train deep neural networks. To alleviate this computational challenge, many approaches have been proposed in a diversity of areas. In this work, two of the existing Apache Spark-based acceleration frameworks for deep learning (SparkNet and DeepSpark) are compared and analyzed in terms of the training accuracy and the time demands. In the authors' experiments with the CIFAR-10 and CIFAR-100 benchmark datasets, SparkNet showed a more stable convergence behavior than DeepSpark; but in terms of the training accuracy, DeepSpark delivered a higher classification accuracy of approximately 15%. For some of the cases, DeepSpark also outperformed the sequential implementation running on a single machine in terms of both the accuracy and the running time.

A MODIFIED EXTENDED KALMAN FILTER METHOD FOR MULTI-LAYERED NEURAL NETWORK TRAINING

  • KIM, KYUNGSUP;WON, YOOJAE
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.22 no.2
    • /
    • pp.115-123
    • /
    • 2018
  • This paper discusses extended Kalman filter method for solving learning problems of multilayered neural networks. A lot of learning algorithms for deep layered network are sincerely suffered from complex computation and slow convergence because of a very large number of free parameters. We consider an efficient learning algorithm for deep neural network. Extended Kalman filter method is applied to parameter estimation of neural network to improve convergence and computation complexity. We discuss how an efficient algorithm should be developed for neural network learning by using Extended Kalman filter.

Bio-signal Data Augumentation Technique for CNN based Human Activity Recognition (CNN 기반 인간 동작 인식을 위한 생체신호 데이터의 증강 기법)

  • Gerelbat BatGerel;Chun-Ki Kwon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.2
    • /
    • pp.90-96
    • /
    • 2023
  • Securing large amounts of training data in deep learning neural networks, including convolutional neural networks, is of importance for avoiding overfitting phenomenon or for the excellent performance. However, securing labeled training data in deep learning neural networks is very limited in reality. To overcome this, several augmentation methods have been proposed in the literature to generate an additional large amount of training data through transformation or manipulation of the already acquired traing data. However, unlike training data such as images and texts, it is barely to find an augmentation method in the literature that additionally generates bio-signal training data for convolutional neural network based human activity recognition. Thus, this study proposes a simple but effective augmentation method of bio-signal training data for convolutional neural network based human activity recognition. The usefulness of the proposed augmentation method is validated by showing that human activity is recognized with high accuracy by convolutional neural network trained with its augmented bio-signal training data.

Empirical Comparison of Deep Learning Networks on Backbone Method of Human Pose Estimation

  • Rim, Beanbonyka;Kim, Junseob;Choi, Yoo-Joo;Hong, Min
    • Journal of Internet Computing and Services
    • /
    • v.21 no.5
    • /
    • pp.21-29
    • /
    • 2020
  • Accurate estimation of human pose relies on backbone method in which its role is to extract feature map. Up to dated, the method of backbone feature extraction is conducted by the plain convolutional neural networks named by CNN and the residual neural networks named by Resnet, both of which have various architectures and performances. The CNN family network such as VGG which is well-known as a multiple stacked hidden layers architecture of deep learning methods, is base and simple while Resnet which is a bottleneck layers architecture yields fewer parameters and outperform. They have achieved inspired results as a backbone network in human pose estimation. However, they were used then followed by different pose estimation networks named by pose parsing module. Therefore, in this paper, we present a comparison between the plain CNN family network (VGG) and bottleneck network (Resnet) as a backbone method in the same pose parsing module. We investigate their performances such as number of parameters, loss score, precision and recall. We experiment them in the bottom-up method of human pose estimation system by adapted the pose parsing module of openpose. Our experimental results show that the backbone method using VGG network outperforms the Resent network with fewer parameter, lower loss score and higher accuracy of precision and recall.

Generation of optical fringe patterns using deep learning (딥러닝을 이용한 광학적 프린지 패턴의 생성)

  • Kang, Ji-Won;Kim, Dong-Wook;Seo, Young-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.12
    • /
    • pp.1588-1594
    • /
    • 2020
  • In this paper, we discuss a data balancing method for learning a neural network that generates digital holograms using a deep neural network (DNN). Deep neural networks are based on deep learning (DL) technology and use a generative adversarial network (GAN) series. The fringe pattern, which is the basic unit of a hologram to be created through a deep neural network, has very different data types depending on the hologram plane and the position of the object. However, because the criteria for classifying the data are not clear, an imbalance in the training data may occur. The imbalance of learning data acts as a factor of instability in learning. Therefore, it presents a method for classifying and balancing data for which the classification criteria are not clear. And it shows that learning is stabilized through this.