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Abstract

In this paper, we present a two-stage scalable channel estimator (TSCE), a

deep learning (DL)-based scalable, and robust channel estimator for wireless

cellular networks, which is made up of two DL networks to efficiently support

different resource allocation sizes and reference signal configurations. Both

networks use the transformer, one of cutting-edge neural network architec-

ture, as a backbone for accurate estimation. For computation-efficient global

feature extractions, we propose using window and window averaging-based

self-attentions. Our results show that TSCE learns wireless propagation

channels correctly and outperforms both traditional estimators and baseline

DL-based estimators. Additionally, scalability and robustness evaluations are

performed, revealing that TSCE is more robust in various environments than

the baseline DL-based estimators.
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1 | INTRODUCTION

5G wireless cellular networks are critical to mobile
connectivity and many 5G-based applications, such as
mobile communications, Internet of Things, and ultrare-
liable and low latency communication, according to
Electronics and Telecommunications Research Institute
(ETRI) [1]. Beyond 5G, 6G networks are expected to
support a wide range of futuristic applications, including
virtual and augmented reality services and holographic
communication services. To meet the performance
requirements of 6G, much effort will be expended; for
example, higher frequencies will be extensively investi-
gated to exploit much broader spectrums for extremely
high throughput.

Artificial intelligence (AI), which is mainly repre-
sented as the machine learning (ML) and deep learning
(DL) technologies, is one of the key ingredients for realiz-
ing 6G [2]. Breakthroughs in storage and computation
technology, as well as the development of neural network
models and algorithms, have largely contributed to recent
advances in AI technologies. Many successful stories
have emerged from AI research and applications in
computer vision and natural language processing (NLP).
Natural AI model capabilities such as feature discovery
and complex representation played important roles in
these areas. Wireless communications are also attempting
to leverage advances in AI technologies, particularly in
areas where the optimal solution does not exist or the
complexity is too high to be implemented in practice,

Received: 24 May 2022 Revised: 1 October 2022 Accepted: 21 October 2022

DOI: 10.4218/etrij.2022-0209

This is an Open Access article distributed under the term of Korea Open Government License (KOGL) Type 4: Source Indication + Commercial Use Prohibition +

Change Prohibition (http://www.kogl.or.kr/info/licenseTypeEn.do).

1225-6463/$ © 2022 ETRI

ETRI Journal. 2022;44(6):915–924. wileyonlinelibrary.com/journal/etrij 915



according to Shafin and others [3]. In 3GPP, a study of the
benefits of augmenting the NR air interface with improved
support of AI/ML-based algorithms is started [4]. Channel
estimations are also being focused on using AI for improved
estimation performances with reduced complexity.

Channel estimation is one of the fundamental problems
in wireless communication because wireless signals are
inevitably distorted, noised, and interfered with during wire-
less transmission medium experiences. By observing the dis-
torted propagation channel, which is done by channel
estimation, the transmitted signal can be correctly recovered
and demodulated at the receiver. However, data rates are
extremely high in 6G cellular networks, and accurate chan-
nel variations are required. Furthermore, increasing the
number of transmission and reception antennas and data
streams for high throughput makes channel estimation even
more difficult, and communication bandwidths are becom-
ing larger as higher frequency bands such as millimeter
waves (mmWave) and terahertz (THz) bands are used.

In this paper, we present the two-stage scalable chan-
nel estimator (TSCE), a DL-based scalable and robust
channel estimator. TSCE comprises two DL networks
that can support different resource allocation sizes and
reference signal (RS) patterns. The main contributions of
this paper are as follows:

(1) We develop a novel DL architecture sequentially pro-
cessing different resource units, which are a RS and a
resource block (RB), for scalable and robust channel
estimations.

(2) We propose a window averaging multihead self-
attention (WA-MSA) operation for efficient global fea-
ture extractions of a large number of RSs. To our
knowledge, the proposed DL-based channel estimator
is the first channel estimator process sequence of RSs.

(3) We provide extensive simulation results, not only the
channel estimation performances but also the gener-
alization performances for scalability and robustness
studies. To the best of our knowledge, this paper is
the first extensive study considering both resource
allocation sizes and RS configurations.

2 | RELATED WORKS

Recently, channel estimations leveraged by DL technologies
have been widely studied for wireless cellular networks. Ye
and others [5] presented a pioneer work of applying DL in
channel estimation, which proposed a deep-neural network
(DNN) for channel estimation and signal detections using
the multilayer perceptron (MLP). By the ability of MLP to
learn the characteristics of wireless channels, the proposed
estimator outperforms traditional algorithms, such as least

square (LS) and linear minimum mean squared error
(LMMSE) algorithms. Furthermore, evaluations on noni-
deal environments are performed, and the results show
that using the MLP results in less performance degrada-
tion than traditional methods. However, although MLP
architecture is efficient in extracting features from
received RSs via the high connection-density of nodes
among hidden layers, MLP-based channel estimators are
not scalable for various configurations, such as resource
allocation sizes and the number of RSs, in general. There-
fore, multiple DNNs might be defined and independently
trained for each configuration because the number of
inputs and outputs of the estimators are fixed.

Time-frequency responses of wireless propagation
channels can be considered as 2D images, enabling the
use of numerous AI technologies previously developed for
image processing, which is a major application of recent
AI. In Soltani and others [6], a pipelined image processing
technique, which is super resolution (SR) and image resto-
ration (IR), is proposed to obtain denoised full resources’
channel responses from the interpolated resource grid
using received RSs. Popular convolutional neural net-
works (CNNs)-based architectures, which are SRCNN [7]
and DnCNN [8], are used as underlying networks for SR
and IR of the estimator. In Li and others [9], deep residual
network-based channel estimator [10] is introduced. The
estimator in Li and others [9] proposes to perform postup-
sampling as a transpose convolution layer and all compu-
tation before the upsampling using the received pilot
signal for low computations. Unlike MLP-based estima-
tors, CNN-based estimators can be designed to be scalable
to various input sizes; for example, fully convolutional net-
works can accept variable sizes of inputs. Although CNN-
based estimators are scalable, it is still necessary to con-
sider the robustness of scenarios and/or configurations on
which the DL-based estimators are not trained.

Generative adversarial network (GAN) [11] is an
important branch of DL and can generate realistic artifi-
cial images with the help of a discriminator network to
determine whether the output of a generator network is
real or not. In Radford and others [12], deep convolu-
tional GAN (DCGAN) -based network [13] and an algo-
rithm using the network for channel estimation were
proposed. [14] also presented super resolution GAN
(SRGAN)-based channel estimator [15], where the gener-
ator network is designed and trained to generate realistic
channels using received pilot signals. The characteristics
of scalability and robustness of each GAN-based channel
estimator follow the design of the generator network, and
the generator network of both Balevi and Andrews [12]
and Ledig and others [15] is based on CNN.

Self-attention mechanism and transformer network
[16] have great successes in various NLP applications, for
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example, Devlin and others [17], by its powerful feature
extractions, and also for various image processing appli-
cations [18]. Several works [19-22] presented channel
estimations based on transformer network or attention
mechanisms. A transformer network can be designed to
process variable lengths of sequences as inputs and
outputs, which is beneficial for designing scalable
channel estimators. However, several transformer-based
estimators, including in Li and Peng [20] and Luan and
Thompson [22], might not process variable size of resource
grids through fully connected layers and/or upscaling
modules, whose input and output dimensions should be
predetermined to a specific configuration. Moreover, as
shown in the later part of this paper, the baseline
transformer-based estimator tends to learn a specific
scenario in the training dataset rather than general
relationships, like other baseline DL-based estimators.
This study aims to design a channel estimator that has
scalability while also having robustness by leveraging the
feature extraction capabilities of the transformer network.

3 | SYSTEM MODEL

We consider orthogonal frequency division multiplexing
(OFDM) wireless networks with T transmission antennas
and R reception antennas. The received signal at the
receiver’s nth receive antenna on kth symbol, ith subcar-
rier can be represented as

yk,i,n ¼ hk,i,nsk,iþ zk,i,n, ð1Þ

where sk,i are transmission signals, hk,i,n are precoded
channels, and zk,i,n are additive white gaussian noises.
The precoded channels hk,i,n are

hk,i,n ¼
XNs

m¼1

~hk,i,n,mwk,i,m, ð2Þ

where ~hk,i,n,m are channel responses between mth trans-
mission antenna and nth reception antenna and wk,i,m

are precoding coefficients of mth transmission antenna.
For each reception antenna, the received signal of a nth
reception antenna on a slot is

Yn ¼Hn
O
sþzn, ð3Þ

where Hn,s, and zn are channel response, transmitted
signal, and noises on the resource grid (i.e., a grid of Ns

symbols and Nf subcarriers), respectively, and the symbolN
denotes the Hadamard product, and it is also known

as the element-wise product. A portion of the resource

grid is used to transmit known signals s, also known as
RSs, and the receiver exploits RSs to estimate entire chan-
nel responses Hn �CNs�Nf . The LS method is used for
estimating the response on the positions of RSs as

hLS
p,n ¼

yp,n
sp

, ð4Þ

where yp,n are received signals on RSs positions and sp is
the transmitted RS. The simplest method for estimating
the entire channel is to use two-dimensional
(2D) interpolation of LS estimations.

The LMMSE is another well-known estimation
method that outperforms the LS in terms of mean
squared error (MSE). The LMMSE estimator can be
expressed as follows:

HLMMSE
n ¼RHhp,n Rhphp,nþ

σ2z,n
σ2s

I
� ��1

hLS
p,n, ð5Þ

where the RHhp,n is the cross-correlation matrix between
the channel of the entire resource grid and the RS posi-
tions and the Rhphp,n is the autocorrelation matrix of the
channel of the RS positions. σ2z,n and σ2s are variances of
noise and signal power at nth receive antenna, respec-
tively. Note that to use LMMSE estimation, the correla-
tion matrices must be known; however, accurate
estimation of correlation values is problematic in many
situations [23]. Correlation values can be modeled using
the average delay spreads, and the maximum doppler fre-
quency [24] and an additional reference signal, the track-
ing reference signals, is introduced to precisely measure
delay and doppler spreads in the 5G NR system [25].

4 | TSCE

In this section, we present a DL-based channel estimator,
TSCE, for scalable and robust channel estimations.

4.1 | Overall architecture

Figure 1 depicts an overview of the proposed estimator,
TSCE, which is made up of two transformer networks:
denoising network (DeNet) for denoising and upscaling
network (UpNet) for upscaling. Note that the two-stage
processing is similar to ChannelNet, where ChannelNet
does upscaling first and then performs denoising. DeNet
is designed to process sequences of RSs with positions
and side information for robust denoising to various RS
configurations. Since the length of RS sequences can be
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very long for estimations of large bandwidths, computa-
tionally efficient feature extractions were required for
DeNet. Unlike DeNet, UpNet processes a sequence of
RBs for computationally efficient upscaling. Both DeNet
and UpNet utilize a transformer network that uses a bi-
LSTM layer for more efficient information flows among
RS and RB sequences.

A resource grid Hp contains channel estimates
hLS
p �CLp on known RSs, for example, demodulation RS

(DMRS) in 5G NR systems. And the estimates hLS
p are

given to TSCE. Because the estimates hLS
p are vector of

complex numbers, the shape of input to the estimator is
2�Lp, where Lp is number of RSs. The output of the esti-
mator is the complex channel response of the entire
resource grid Ĥ and shaped 2�Ns�Nf . It should be
noted that the resource grids of each receive antenna can
be treated independently, so the receive antenna index n
is omitted from this section.

4.2 | DeNet

A detailed structure of DeNet is in Figure 1. DeNet gets
an input of estimated channel responses on RSs in real
and imaginary parts, that is, hLS

p �ℝ2�Lp . The first part of
DeNet is an embedding where the responses on each RSs
are converted into D1 dimensions of RS embeddings
using a learnable linear projection neural network layer.
We also used a signal-to-noise (SNR) value as side infor-
mation for the linear embedding layer. Since each RS has
two-dimensional position information of subcarrier and
symbol indices, the fixed 2D Sin-Cos position embeddings
[26] are added into each RS embedding.

Then, denoising transformer (DeTrans) blocks receive
the RS embeddings. The structure of DeTrans blocks is in
Figure 2A. Each DeTrans block consists of three succes-
sive transformer encoders from Dosovitskiy and others
[18]. First transformer encoders have window-based mul-
tihead self-attention (W-MSA) layer [27] instead of
vanilla MSA and second transformer network replaces

the MSA layer as window average-based MSA (WA-
MSA) layer, which is proposed in this paper. We use the
window size W as a number of RSs in an RB in both W-
MSA and WA-MSA layers. For example, in 5G NR sys-
tems, the number of DMRS in an RB is six when the
DMRS configuration type 1 and a DMRS symbol are
used. The last transformer network of the DeTrans block
replaces the MSA layer as a bi-LSTM layer for further
enhanced estimation performances.

The final RS embeddings of DeTrans are recovered to
the vector of denoised channel responses ĥp using a lin-
ear projection output layer of DeNet.

4.2.1 | WA-MSA

MSA in the original transformer [16] and vision trans-
former (ViT) [18] uses self-attentions among global
embeddings, and it induces significant computations, espe-
cially with a large number of embeddings. The vanilla
MSA is difficult to use due to its expensive computations
when the bandwidths of the 6G communication system

F I GURE 1 The overview of TSCE network structure

F I GURE 2 The structure of (A) DeTrans blocks and

(B) UpTrans blocks
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are expected to be vastly increased, and the number of RS
in the entire resource grid can be extremely large.

To reduce computational overhead in extracting the
context of RSs, we applied W-MSA in Liu and others
[27], which splits the embeddings into W -sized windows
and performs local self-attentions. W-MSA, in contrast,
only extracts local information from adjacent RSs and is
inefficient for obtaining global information. Therefore,
we propose WA-MSA for self-attentions to exploit global
channel variation with reduced computations. The opera-
tion of WA-MSA can be formulated as follows:

XðiÞ ¼ 1
W

Xðiþ1ÞW�1

k¼iW

xðkÞ, and ð6Þ

YðiÞ ¼MSAðXðiÞÞ, for i¼ 0,… ,
Lp
W

�1

� �
: ð7Þ

yðkÞ ¼ xðkÞ þ Yðbk=WcÞ �Xðbk=WcÞ
� �

, for k¼ 0,… ,Lp�1,

ð8Þ

where xðkÞ and yðkÞ are input and output RS embeddings
of WA-MSA and XðiÞ and YðiÞ are window averaged input
and output RS embeddings of MSA.

4.3 | UpNet

A detailed structure of UpNet is also in Figure 1. The
denoised channel responses on RSs are inputted to
UpNet, and a resource grid with denoised channel
responses Ĥp are reconstructed at the first stage of
UpNet. Next, a linear 2D interpolation is performed to fill
the response of resources other than RSs with responses
of the nearest RS. The interpolated resource grid is
divided into RB-sized (i.e., Ns�12) patches, and the
patches are mapped into D2 dimensions using a linear
projection layer. The projection layer’s outputs are
referred to as RB embeddings. In addition to the
responses in each RB, side information, such as SNR and
positions of each RB, are also inputted to the linear
embedding layer, same as in DeNet.

Upscaling transformer (UpTrans) blocks receive the
RB embeddings. Figure 2B depicts the structure of
UpTrans blocks. Each UpTrans block consists of a vanilla
transformer encoder and a following modified trans-
former encoder, which replaces MSA as a bi-LSTM layer.
Note that UpTrans blocks operate on RB embeddings,
and the lengths of RB embeddings are much smaller than
that of RS embeddings in general. Therefore, the compu-
tational complexity of UpTrans blocks is affordable with

vanilla MSA. The output RB embeddings of UpTrans
blocks are recovered into the entire channel responses
Ĥ�ℝ2�Ns�Nf through the output layer in UpNet, which
is a linear projection layer.

4.4 | Trainings

TSCE has greater training flexibilities than other
DL-based estimators because it consists of two networks.
For example, optimization algorithms and learning rates
can be applied differently to each network. Furthermore,
each network can be trained simultaneously or sequen-
tially. Each network’s loss functions can also be designed
and applied differently during the training phase. For
both networks, we used the normalized MSE (NMSE) as
the loss function. The loss function for DeNet is

L1 ¼E khp� ĥpk22
khpk22

" #
ð9Þ

and the loss function of UpNet is

L2 ¼E kH� Ĥk22
kHk22

" #
ð10Þ

where the expectations are over the realization of chan-
nels hp and H.

We train our networks in a sequential manner,
i.e., we train DeNet first, and then we use the trained
DeNet to train UpNet. More specifically, inputs of UpNet
are generated using the trained DeNet during the train-
ing of UpNet.

5 | EVALUATION RESULTS

In this section, we present evaluation results of channel
estimation performances of TSCE as well as the baseline
MLP-, CNN-, and ViT-based estimators. Furthermore, we
also provide the generalization performances over
various configurations of estimators.

5.1 | Training and evaluation setups

We consider a transmitter with a single transmission
antenna and a receiver with a single receive antenna.
The resource grid is as in 5G NR (New Radio) system
[25] with 10 RBs and 20 RBs (12 subcarriers in each RB)
in the subcarrier domain and a slot (14 symbols). The RS
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configuration follows the DMRS configuration type
2 (four RS subcarriers in an RB) and on two symbols of a
slot. We use the TDL (Tapped Delay Line) models
defined by 3GPP [28]. The detailed evaluation environ-
ments are summarized in Table 1.

The training data consists of a pair of input and target
data, where the input data is the channel response of RS
positions and SNR value as SI, and the output data is the
channel response of the entire resource grid. The training
data set contains 50000 samples. We use 80% of the train-
ing data for training and the remaining 20% for valida-
tions. We train the networks for all DL-based estimators
with 500 epochs and a batch size of 256.

For baseline MLP-based estimators, we used five
layers of fully connected network layers, each followed
by a rectified linear unit activation function as in Ye and
others [5]. The number of hidden nodes in every layer is
256. To obtain the real and imaginary parts of each chan-
nel response, the number of input nodes is twice the
number of RSs (i.e., 2�Lp). The output layers have twice
the number of nodes as the number of REs (i.e.,
2�Ns�Nf ). It should be noted that the number of input
and output nodes in the MLP-based networks is deter-
mined by the estimation of resource size and the number
of RSs. This is a drawback to applying the MLP-based
estimator to real networks where the resource allocation
and pilot resource can be arbitrarily configured.

For the baseline CNN-based channel estimator, we
used ChannelNet [6] network model.1

We also applied ViT [18] as another baseline estima-
tor. ViT was originally proposed for general image pro-
cessing but can also be used for channel estimation
applications. The detailed configuration of the trans-
former encoder of the baseline ViT-based estimator is in

Table 3. The ViT-based estimator gets input of resource
grids with estimations on the RS positions, splits the
input resource grid into RB-size patches as in UpNet, and
generates a final output of estimations of entire resource
grids.

The detailed configurations of DeTrans and UpTrans
blocks of TSCE are also in Table 2.

5.2 | Channel estimation performances

We perform a simulation to evaluate the channel estima-
tion performances of traditional and DL-based estima-
tors. The channel estimation performances for the TDL-E
channel model with 10-ns delay spread and 100-Hz maxi-
mum doppler spread in 10 RBs are presented in Figure 3.
The figure shows that TSCE achieves lower channel esti-
mation error in terms of NMSE and traditional estima-
tion technologies, such as LS and LMMSE estimators.2

TSCE achieved about 21.2-dB and 8.3-dB lower NMSEs
than LS and LMMSE estimators, respectively, at 0-dB
SNR, as shown in the figure. More importantly, the MLP-
based and ChannelNet estimators performed lower than
TSCE. As shown in the figure, TSCE achieved approxi-
mately 2.6-dB and 4.3-dB lower NMSEs than the MLP-
based estimator and ChannelNet at 0 dB SNR. The ViT-
based estimator also outperformed other estimators, such
as TSCE. Compared with the ViT-based estimator, perfor-
mances in low SNRs were similar, but performance dif-
ferences occurred as SNR increased. For example, at
15-dB SNR, TSCE showed about 0.94-dB lower NMSE
than the ViT-based estimator.

Next, a similar simulation is repeated with another
environment. The channel estimation performances for
the TDL-C channel model with 100-ns delay spread in
20 RBs are shown in Figure 4, and TSCE also outper-
formed other estimators. To illustrate, TSCE can achieve
NMSE of LMMSE obtained at 10-dB SNR (approximately
�15 dB of NMSE) at about 5-dB SNR. TSCE can also
achieve NMSE of MLP-based estimator and ChannelNet;
both obtained at 10-dB SNR (approximately �17 dB of
NMSE) at about 7-dB SNR. The ViT-based estimator also
outperformed other estimators as well as TSCE, but its
performances also tend to decrease in high SNRs com-
pared to TSCE.

Although we evaluated the channel estimation per-
formances by assuming system parameters of a 5G NR
system, TSCE can also be applied to most of the other
communication systems where the pilot signals are used
to measure variations over the wireless channels, such as

TAB L E 1 A summary of evaluation parameters

Parameter Value

Subcarrier spacing 30 kHz

Propagation model TDL-E/TDL-C

Delay spread 10 ns/100 ns

Maximum doppler frequency 100 Hz

Number of RBs 10/20

Number of symbols 14

Antenna configuration 1�1

1We used the official implementation of ChannelNet (https://github.
com/MehranSoltani94/ChannelNet) with the following modifications:
(1) We used real and imaginary parts as two channels of input data at
the same time. (2) Instead of using Gaussian kernels, we used linear 2D
interpolation.

2The LMMSE estimator uses estimated correlation matrix based on
channel delay parameter [23] and doppler frequency estimations [29].
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Long-term Revolution (LTE) or Wireless Local Area Net-
work (W-LAN) systems. Moreover, it is more affirmative
to be applied in 6G cellular networks because TSCE does
not require accurate channel covariances measurements,

which can be acquired using additional and resource-
consuming RSs in 5G NR, and this point will give great
flexibility as well as reduced overheads in 6G cellular net-
work designs.

TAB L E 2 Details of Transformer encoders of ViT-based estimator and TSCE

Model Layers Hidden size MLP size Heads # Params

ViT-based 4 64 128 6 503 k

DeTrans 2 18 32 6 126 k

UpTrans 4 64 128 6 781 k

F I GURE 3 Channel estimation performances for TDL-E

channel model with 10-ns delay spread in 10 RBs

F I GURE 4 Channel estimation performances for TDL-C

channel model with 100-ns delay spread in 20 RBs

F I GURE 5 Channel estimation performances in 20 RBs using

DL networks trained of 10 RBs

F I GURE 6 Channel estimation performances of DMRS

configuration type 1 using DL networks trained of DMRS

configuration type 2
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5.3 | Evaluations on scalability and
robustness

As well as the estimation performance in environments
where DL-based estimators trained on, scalable and
robust estimations in other environments or configura-
tions than the training data are important to be applied
to real-world networks. To evaluate the scalability and
robustness, we performed an experiment of estimating
20 RBs of channels using the DL-based estimators trained
using 10 RBs of training data with the TDL-E channel
model. It should be noted that we did not evaluate the
MLP-based estimator since it does not support larger
inputs than the predefined input size. Figure 5 shows that
TSCE showed low estimation errors even when it was
not further trained using the appropriate size (20 RBs) of
training data, especially at low SNRs. Compared with
ChannelNet, TSCE shows more than 4-dB lower NMSE
at low SNRs without fine-tuning. We also performed an
epoch of downstream fine-tuning with 20 RBs of training
data. TSCE showed significantly enhanced performance
in high SNRs with an epoch of fine-tuning, whereas
ChannelNet did not show much enhancement with fine-
tuning. The ViT-based estimator was shown as not prop-
erly working in a different environment than the training
without fine-tuning. This is because the ViT-based esti-
mator only learned estimations of a given size of the
resource grid.

Next, we examined the impact of different RS config-
urations. We assess channel estimation performance
using the DL-based estimators with the DMRS configura-
tion type 1 (six RS subcarriers in an RB), whereas the
DL-based estimators are trained using the dataset of
DMRS configuration type 2. Figure 6 shows that TSCE
gives more than 4 dB lowered NMSE than ChannelNet in
low SNRs without any fine-tuning. We also perform an
epoch of downstream fine-tuning with appropriate
(DMRS configuration type 1) training data. TSCE also
showed a significant gain in fine-tunings, especially in
high SNRs. The ViT-based estimator also does not work
properly in different RS configurations, and this is
because the ViT-based estimator only processes the RB-
size of patches and does not fully extract the information
of RSs.

According to the evaluations in this subsection, it is
indicated that TSCE is more robust in a different environ-
ment and configuration to the training, even without any
further downstream fine-tunings. It is also indicated that
the performances of TSCE in high SNRs can be signifi-
cantly enhanced with an epoch of fine-tunings.

5.4 | Computations and model sizes

Table 3 shows the computation complexity in floating
point operations per second (FLOPs) and the number of
parameters of the DL-based estimators. Our model uses
far fewer computations than ChannelNet while outper-
forming both channel estimation and generalization per-
formances. The MLP-based channel estimator has the
lowest computation complexity, but the number of
parameters grows in proportion to the input and output
sizes because the MLP-based estimators need to be
defined according to different sizes of input and output.

6 | CONCLUSIONS

In this paper, we present TSCE, a DL-based scalable and
robust channel estimator, for 6G wireless cellular net-
works. We propose a scalable DL architecture for channel
estimation composed of two transformer networks,
which are DeNet and UpNet, for capturing local and
global contexts efficiently. For computationally efficient
feature extractions of RSs, we also propose WA-MSA in
DeNet. We show that TSCE achieves better channel esti-
mation performances in terms of NMSE than other tradi-
tional and baseline DL-based channel estimators in
various environments. We also focus on the scalability
and robustness of estimators and demonstrate that TSCE
is more robust in environments different from the train-
ing, even without further downstream fine-tunings.
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TAB L E 3 Computations and model sizes of DL-based estimators

Estimators # FLOPs (10 RBs) # Params (10 RBs) # FLOPs (20 RBs) # Params (20 RBs)

MLP-based 2.2 M 1.1 M 4 M 2 M

ChannelNet 2.3 G 682 k 4.6 G 682 k

ViT-based 10.96 M 503 k 21.02 M 503 k

TSCE 28.04 M 907 k 56 M 907 k
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