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ABSTRACT. This paper discusses extended Kalman filter method for solving learning prob-
lems of multilayered neural networks. A lot of learning algorithms for deep layered network
are sincerely suffered from complex computation and slow convergence because of a very large
number of free parameters. We consider an efficient learning algorithm for deep neural net-
work. Extended Kalman filter method is applied to parameter estimation of neural network
to improve convergence and computation complexity. We discuss how an efficient algorithm
should be developed for neural network learning by using Extended Kalman filter.

1. INTRODUCTION

In the last decade, a lot of efforts were made for introducing deep neural networks into
practical applications on both theoretical and hardware levels. Neural networks have been
studied to complex functions in various fields, including pattern recognition, identification,
classification and control systems [4, 7]. The neural network is a system that approximates
the process of the human brain. A multi-layered neural network (MNN) is a nonlinear system
having a layered structure, and its learning algorithm is regarded as parameter estimation for
such a nonlinear system [4]. Because of a very large number of free parameters, the sequential
(on-line) training algorithms can be used for this kind of models. Back-propagation algorithms
based first order gradient descent method are used to train the multi-layered neural network but
the algorithm converges slowly [10].

In order to improve the convergence, various modified learning algoritms have been pro-
posed by using the second order derivative for updating the weights of neural network. Popular
second-order methods have included weight updates based on quasi-Newton, LevenburgMar-
quardt(LM), and conjugate gradient techniques [5, 6, 13]. LM can be thought of as a combi-
nation of steepest descent and the Gauss-Newton method. The extended Kalman filter (EKF)
is well-known as a state estimation method for a nonlinear system [3]. The extended Kalman
filter approach for neural network learning is one of second order methods under simplifying
assumptions [1].

Kalman Filter based training can be used for different models of neural networks such as
multilayer perceptrons, radial basis function networks, and neural networks for classification
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[2, 5]. Various learning algorithms for a multilayered neural network derived from the EKF
have been proposed to improve the convergence performance in comparison with the back-
wards error propagation algorithm [5, 6, 10]. Since this EKF-based learning algorithm approx-
imately gives the minimum variance estimate of the connection-weights, it is expected that it
converges as fast as second order [6]. But, the algorithm based extended Kalman filter has a
serious drawback in its computational complexity [6]. The main bottleneck for scalable im-
plementation of the Kalman filter is the computation and representation of the state covariance
matrix. Our object is to present a unified method combining the existing back-propagation
algorithm based on gradient-descent method and extended Kalman filter. We discuss a vari-
ous issues related to computation problems, including derivative calculations, computationally
efficient formulations and methods for avoiding matrix inversions and computational stability.

This paper is organized as follows: in Section 2, we review multi-layered feed-forward
neural network, back-propagation learning in the matrix form, and second order method as
Levenverg-Marquardt method. In Section 3, we derive back-propagation algorithm using the
extended Kalman Filter. In Section 4, we discuss a variety of issues related to fast computation
implementation of EKF for MNN.

2. NEURAL NETWORK

2.1. Multilayered Neural Network. We review multi-layered neural network(MNN) [4, 8].
An MNN consists of several layers of nodes which express artificial neural units. Each node
which is connected by the links with all nodes in the adjacent layer computes a weighted
sum of inputs, and then add an offset to the sum. An MLP(multilayerd perceptron) can be
thought of as a function that maps from input to output vectors. Since the behaviour of the
function is parameterized by the connection weights, a single MLP is capable of instantiating
many different functions. One of the more popular activation functions for backpropagation
networks is the sigmoid, a real function f : R→ (0, 1) defined by the expression

f(x) =
1

1 + e−x
. (2.1)

Consider a layered feed-forward neural network as Fig. 2.1. The network consists of M
layers, in which the first layer denotes the input, the last M layer is the output, and the other
layers are intermediate (or hidden) layers. Here layer 0 is the layer of input sites. It is assumed
that the (k − l)th layer has Nk−1 units. The model of the network is based on the following
equations

pkj =

Nk−1∑
i=1

wk
j,io

k−1
i + wk

i,0 (2.2)

okj = f(pkj ) (2.3)

Assume that a connection-weight matrix between layer n − 1 and n is denoted by an Nn ×
(Nn−1 + 1) matrix Wn = (wn

ij) and bias terms wn
i,0 are put on the last column of W . The
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FIGURE 1. A multi-layered feed-forward neural network

equation (2.2) is rewritten in the matrix term such that

pi =Woi−1 (2.4)

ok = f(pj) (2.5)

where pi is a column vector with entries pik for i layer and oi is a column vector with entries
oik. The output vector of the nodes in the n-th layer

on(t) =
[
on1 (t) on2 (t) · · · onNn

(t)
]T

The desired output vector of the MNN for M layer are defined by

y(t) =
[
y1(t) y2(t) · · · yNM

]T
The purpose of the learning procedure is to find a set of weights such that, when the network
is presented with each input vector, the output vector produced by the network is the same as
the desired output vector. The total error in the performance of the network with a particular
set of weights can be computed by comparing the actual and desired output vectors for every
case. The total error E at t is defined by

E(t) =
1

2

NM∑
j=1

(oMj (t)− yj(t))
2. (2.6)

If the neural network solves the classification problem, then it is possible to determine a
cross-entropy error such as

E(t) =

NM∑
j=1

yj(t) ln o
M
j (t)− (1− yj(t)) ln(1− oMj (t)). (2.7)
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The objective is to determine an adaptive algorithm or rule which adjusts the parameters of
the network based on a given set of input-output pairs. If the weights of the networks are
considered as elements of a parameter vector θ, the learning process involves the determination
of the vector θ∗ which optimizes a performance function E based on the output error.

2.2. Gradient descent method and back propagation in matrix form. The procedure de-
termining gradient descent in Neural network is called a back-propagation algorithm [9]. Since
the EKF is a method of estimating the state vector, we put the unknown connection-weights as
the state vector

w =
[
(w1)T (w2) · · · (wM )T

]T
where the vectors wn and wn

i are defined by

wn =
[
(wn

1 )
T (wn

2 )
T · · · (wn

Nn
)T
]T

wn
i =

[
wn
i,0 wn

i,1 · · · ani,Nn−1

]T
.

The total number of the linkweights is defined by

L =

M∑
n=1

(Nn−1 + 1)Nn. (2.8)

The back-propagation algorithm is applicable for networks with trainable hidden units. We
can thus minimize E in Eq.(2.6) by using an iterative process of gradient descent, for which
we need to calculate the gradient

∇E =
[

∂E
∂w1

· · · ∂E
∂wL

]T
A simple back propagation method is based on the gradient descent method that the change

∆wk
ij in weight be proportional to ∂E/∂wk

ij [4]. The gradient of the performance function
with respect to θ is computed as ∇θE and θ is adjusted along the negative gradient as

θ = θnom − ϵ∇θE|θ=θnom

where the step size ϵ is a suitably chosen constant and θnom denotes the nominal value of
θ at which the gradient is computed. The procedure determining gradient descent in Neural
network is called a back-propagation algorithm [9].

The back-propagation algorithm based on the gradient descent method can be summarized
in three equations as

wk
ij =w

k
ij − ϵδki o

k−1
j ,

δMj =(oMj − yj)f
′(pMi ),

δki =
∑
l=1

δk+1
l wk

ljf
′(pkj ).
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By using matrix concept, the back-propagation algorithm is more generally explained to multi-
layered architectures [8]. A error vector e of the stored derivatives of the quadratic deviations
is defined by

e =
(
(oM1 − t1) (oM2 − t2) · · · (oMNM

− tNM
)
)

If f is sigmoid, then the derivative stored in the feed-forward step at the Ni units of i-th layer
can be written as diagonal matrix

Di =


oi1(1− oi1) 0 · · · 0

0 oi2(1− oi2) · · · 0
...

...
. . .

...
0 0 · · · oiNi

(1− oiNi
)


for each 1 ≤ i ≤ M . The back-propagated error to the output layer is then obtained in the
form δM = DMe. The back-propagation error to the i-th computing layer is defined as the
following, recursively,

δi = eDMWMDM−1WM−1 · · ·W i+1Di (2.9)

δi = δi+1W i+1Di. (2.10)

We reformulate the back-propagation algorithm in the matrix form for multilayered neural
network. Matrix form representation is helpful to understand the total flow of neural network
learning algorithm. This give some motivation to improve the back-propagation algorithm.

2.3. Second order method of Back propagation. As the second-order derivatives of total
error function, Hessian matrix H gives the proper evaluation on the change of gradient vector.
The update rule for Newtons method is

wk+1 = wk −H−1gk. (2.11)

where gk = Jke is the gradient vector of a weght function and J is a Jacobian matrix. The
relationship between Hessian matrix H and Jacobian matrix J can be rewritten as H = JTJ .
The update rule is called the GaussNewton algorithm

Levenberg-Marquardt algorithm introduces another approximation to Hessian matrix H:

H = JTJ + µI. (2.12)

where J is a Jacobian matrix, µ is always positive, and I is the identity matrix. The elements
on the main diagonal of the approximated Hessian matrix will be larger than zero. It can be
sure that matrix H is always invertible. The update rule of LevenbergMarquardt algorithm can
be presented as

wk+1 = wk − (JT
k Jk + µI)Jkek. (2.13)

As the combination of the steepest descent algorithm and the GaussNewton algorithm, the Lev-
enberg Marquardt algorithm switches between the two algorithms during the training process
[13]. When the combination coefficient µ is very small, GaussNewton algorithm is used. When
combination coefficient µ is very large, the steepest descent method is used.
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3. EXTENDED KALMAN FILTER APPROACH

We have reviewed the back-propagation algorithms based on the first and second order. The
first order algorithms converge slowly for large systems. A Kalman filter approach is based on
the use of the information of the second order derivative for updating the weights of the neural
network. We show how a time-varying learning rate can be computed by using the extended
Kalman filter. The MNN is then expressed by the following nonlinear system equations

w(t+ 1) = w(t) + u(t)

y(t) = ht(w(t)) + v(t)

= oM (t) + v(t)

Note here that oM (t) is the output vector of the nodes in the output layer. The input combined
with the structure of the MNN is expressed by a nonlinear time-variant function ϕt,. The ob-
servation vector is represented by the desired output vector y(t), and u(t) and v(t) are assumed
to be a white noise vectors with covariance matrix R(t) and Q(t), respectively.

We will be concerned with discrete-time systems such that

w(t+ 1) = ft[w(t)] + u(t) (3.1)

y(t) = ht[w(t)] + v(t) (3.2)

where u(·), x(·), and y(·) are discrete time sequences. We assume that h is sufficiently dif-
ferentiable with respect to x. By using a Taylor series, we can make a linearization of the
nonlinear function ht about a nominal trajectory ŵ and ŷ = ht(ŵ(t)) such as

ht(w(t)) = ht(ŵ(t)) +
∂ht
∂w

∣∣∣∣
ŵ

· x̃+ higher order terms

δy =
∂ht
∂w

∣∣∣∣
ŵ

· x̃+ higher order terms

where ỹ = y − ŷ and x̃ = w − ŵ. We can also obtain the linearization of f , similarly. The
linearized equations about nominal values are reformulated as

x̃(t+ 1) = Ftx̃(t) + u(t), (3.3)

ỹ(t) = Htx̃(t) + v(t) (3.4)

where Ft = ∇ft ∈ RL×L, Ht = ∇ht ∈ RNM×L. Ft and Ht are defined by Jacobian matrices
of a function ft and ht with respect to a nominal trajectory x̂. If the problem is such that the
actual trajectory x is sufficiently close to the nominal trajectory x̂(t) so that the higher order
terms in the expansion can be ignored, then this method transforms the problem into a linear
problem [3]. The NM × L Jacobian matrix Ht is expressed by

Ht =

(
∂ht
∂w

)
w=ŵ

=
[
H1 H2 · · · HM

]
Hn =

[
Hn

1 Hn
2 · · · Hn

Nn+1

]
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where Hn
k is defined by an NM × (Nn + 1) matrix such as

Hn
k =

(
∂oM (t)

∂wn
k

)
wn

k=ŵn
k

. (3.5)

We have oM = Fk+1(p
k+1) = Fk+1(W

k+1f(pk)). The derivatives of oM with respect to
wk
i,j and wk+1

i,j is obtain as

∂oM

∂wk
ij

=
∂Fk+1

∂pk+1

∂pk+1

∂wk
ij

= [
∂Fk+1

∂pk+1
W k+1]io

k
i (1− oki )o

k−1
j

∂oM

∂wk+1
i,j

=
∂Fk+1

∂pk+1

∂pk+1

∂wk+1
ij

=

[
∂Fk+1

∂pk+1

]
i

okj

Define a row vector ∆k
i with j entry ∆k

i,j = ∂oM

∂wk
ij
/ok−1

j similar to the back-propagation. Re-

cursively, ∆k
i = ∆k+1

i W k+1Dk. Hn
k is computed by Hn

k = ∆n
ko

n
k .

We regard the learning of network as an estimation (or identification) problem of constant
parameters. The measurement noise u(t) is typically characterized as zero mean, white noise
with covariance given by E[u(t)u(k)T ] = δ(t − k)Qt. The process noise v(t) is also charac-
terized as zero-mean, white noise with covariance given by E[v(t)v(k)T ] = δ(t− k)Rt.

The training problem using Kalman filter theory can now be described as finding the min-
imum mean-squared error estimate of the state w using all observed data. The EKF(extended
Kalman filter) solution to the training problem is given by the following recursion

x̃(t+ 1) = x̃(t) +K(t)ξ(t) (3.6)

S = Rt +HtP (t)H
T
t = Rt +

∑
HkP k(Hk)T (3.7)

K(t) = P (t|t− 1)HT
t [Rt +HtP (t|t− 1)HT

t ]
−1 (3.8)

P (t+ 1|t) = P (t|t− 1)−K(t)HtP (t|t− 1) +Qt. (3.9)

where this estimate of x̃(t) is a function of the Kalman gain matrix K(t). P (t + 1|t) is the
approximate error covariance matrix. The Kalman gain matrix K(t) is a function of the ap-
proximate error covariance matrix of x̃(t). The NM ×NM covariance matrix S in (3.7) is the
zero-mean innovation vector ξ(t) = y(t) − ŷ(t) and P k is the error covariance matrix of x̃k

for k layer.

4. MODIFICATION OF EKF

In this section, we discuss a various issues related to computational problems, including de-
rivative calculations, computationally efficient formulations and methods for avoiding matrix
inversions and computational stability. We should compute various matrices such as the esti-
mation error covariance matrix, the measurement covariance matrix, and the additional process
noise matrix [5, 10]. The algorithm based extended Kalman filter has a serious drawback in its
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computational complexity [6]. Its computational complexity is O(NML
2) per pattern, which

becomes intractable as the size of the MNN grows large.
The main objective is to consider several computational methods to avoid full matrix mul-

tiplication and matrix inversion in computing innovation error matrix S, Kalman gain K and
error covariance matrix P .

First, we note that if the error weights defined by x̃n = wn − ŵn for n layer are jointly
independent for other layers, then the error covariance matrix P (t) is block diagonal matrix
[6, 11, 12]. Then the weight x̃n of independently of other layers’ weights can be updated.

Second, we note that the term S−1 in the Kalman gain in (3.8) can not be separable for
different layers and it is difficult to make the innovation error matrix S and the error covariance
matrix P diagonal matrices since the matrix Hn induced in (3.4) and (3.5) is dense matrix.
So we proposed a new model for the Kalman gain to be separable. We modify the desired
output function y(t) in (3.2) and (3.4) by adding fictitious measurement outputs. The back-
propagation error δi of the i-th layer in (2.10) is regarded as the measurement error ỹi of i-the
layer. Then a new desired output is defined by

y =


y1

y2

...
yM

 =


H1 O · · · O
O H2 · · · O
...

...
. . .

...
O O · · · HM



x̃1

x̃2

...
x̃M

+


v1

v2

...
vM

 (4.1)

where E(vivj) = Riδi,j . We assume that y(t) =
∑

n y
n, v(t) =

∑
k v

k(t) and R =
∑

k R
k.

yk for hidden layer denotes the fictitious output similar to the method in [12]. The covari-
ance matrix of the zero-mean innovation vector of y − ỹ is a block diagonal matrix. The
EKF(extended Kalman filter) solution to the training problem is obtained by the following
recursion

x̃n(t+ 1) = x̃n(t) +Kn(t)ỹn(t) (4.2)

Sn = Rn +HnPn(t|t− 1)(Hn)T (4.3)

Kn(t) = Pn(t|t− 1)(Hn)T [Rn +HnPn(t|t− 1)(Hn)T ]−1 (4.4)

Pn(t+ 1|t) = Pn(t|t− 1)−Kn(t)HnPn(t|t− 1) +Qn. (4.5)

By assuming that Rn is a diagonal matrix λnI , we can avoid a matrix inversion computation of
innovation covariance matrix S in (4.3) and conserve the block diagonal property of P and S
by giving G and R the assumption as diagonal matrices. There are many variables that affect
EKF training algorithm performances. These variables are matrices that must be initialized
properly. However the initial values of the EKF training algorithm can influence algorithm
performance.

5. CONCLUSION

We reformulate the back-propagation algorithm in the matrix form for multilayered neural
network. Matrix form representation is helpful to understand the total flow of neural network
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learning algorithm. This give some motivation to improve the back-propagation algorithm. We
discussed some first and second order back-propagation algorithms network gradient-based
training algorithms in matrix-form. The EKF method for MNN has been presented. We dis-
cussed some issues of learning algorithms related to computation problems, including deriva-
tive calculations, computationally efficient formulations and methods for avoiding matrix in-
versions and computational stability. A modified learning algorithm for MNN was proposed
by modifying EKF framework to reduce the computation complexity.
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