• Title/Summary/Keyword: Decoupling Approximation

Search Result 7, Processing Time 0.034 seconds

Influence of the Diagonal Dominance of Modal Damping Matrix on the Decoupling Approximation (모드 댐핑 행렬의 대각선 성분 우세가 비연관화 근사에 미치는 영향)

  • 김정수;최기흥;최기상
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.1963-1970
    • /
    • 1993
  • A simple technique to decouple the modal equations of motion of a linear nonclassically damped system is to neglect the off-diagonal elements of the modal damping matrix. This is called the decoupling approximation. It has generally been conceived that smallness of off-diagonal elements relative to the diagonal ones would validate its use. In this study, the relationship between elements of the modal damping matrix and the error arising from the decoupling approximation is explored. It is shown that the enhanced diagonal dominance of the modal damping matrix need not diminish the error. In fact, the error may even increase. Moreover, the error is found to be strongly dependent on the exitation. Therefore, within the practical range of engineering applications, diagonal dominance of the modal damping matrix would not be sufficient to supress the effect of modal coupling.

Application of the Projection Operator Technique to the Study of NMR Line Shape and Free Induction Decay Curve (NMR 吸收線 모양과 誘導磁氣自由減衰曲線 硏究에의 投影演算子法의 應用)

  • Lee Jo W.;Sung Nak Jun
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.5
    • /
    • pp.362-371
    • /
    • 1977
  • In this paper application of the projection operator technique to the study of NMR absorption line shape and free induction decay curve is explored. It is found that the projection operator technique can provide a convenient means for deriving a set of hierarchy equations which may serve as a good starting point for theoretical calculation of the absorption line and free induction decay function by successive approximation or by an appropriate decoupling approximation. A brief review of linear response theory of NMR line shape and the relation between the absorption line shape and free induction decay function are also described.

  • PDF

NUMERICAL METHOD FOR SINGULARLY PERTURBED THIRD ORDER ORDINARY DIFFERENTIAL EQUATIONS OF REACTION-DIFFUSION TYPE

  • ROJA, J. CHRISTY;TAMILSELVAN, A.
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.3_4
    • /
    • pp.277-302
    • /
    • 2017
  • In this paper, we have proposed a numerical method for Singularly Perturbed Boundary Value Problems (SPBVPs) of reaction-diffusion type of third order Ordinary Differential Equations (ODEs). The SPBVP is reduced into a weakly coupled system of one first order and one second order ODEs, one without the parameter and the other with the parameter ${\varepsilon}$ multiplying the highest derivative subject to suitable initial and boundary conditions, respectively. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and finite difference scheme. The weakly coupled system is decoupled by replacing one of the unknowns by its zero-order asymptotic expansion. Finally the present numerical method is applied to the decoupled system. In order to get a numerical solution for the derivative of the solution, the domain is divided into three regions namely two inner regions and one outer region. The Shooting method is applied to two inner regions whereas for the outer region, standard finite difference (FD) scheme is applied. Necessary error estimates are derived for the method. Computational efficiency and accuracy are verified through numerical examples. The method is easy to implement and suitable for parallel computing. The main advantage of this method is that due to decoupling the system, the computation time is very much reduced.

PRECONDITIONING FOR THE p-VERSION BOUNDARY ELEMENT METHOD IN THREE DIMENSIONS WITH TRIANGULAR ELEMENTS

  • Cao, Wei-Ming;Guo, Benqi
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.2
    • /
    • pp.345-368
    • /
    • 2004
  • A preconditioning algorithm is developed in this paper for the iterative solution of the linear system of equations resulting from the p-version boundary element approximation of the three dimensional integral equation with hypersingular operators. The preconditioner is derived by first making the nodal and side basis functions locally orthogonal to the element internal bases, and then by decoupling the nodal and side bases from the internal bases. Its implementation consists of solving a global problem on the wire-basket and a series of local problems defined on a single element. Moreover, the condition number of the preconditioned system is shown to be of order $O((1+ln/p)^{7})$. This technique can be applied to discretization with triangular elements and with general basis functions.

A Low-Complexity Antenna Selection Algorithm for Quadrature Spatial Modulation Systems

  • Kim, Sangchoon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.9 no.1
    • /
    • pp.72-80
    • /
    • 2017
  • In this work, an efficient transmit antenna selection approach for the quadrature spatial modulation (QSM) systems is proposed. The conventional Euclidean distance antenna selection (EDAS)-based schemes in QSM have too high computational complexity for practical use. The proposed antenna selection algorithm is based on approximation of the EDAS decision metric employed for QSM. The elimination of imaginary parts in the decision metric enables decoupling of the approximated decision metric, which enormously reduces the complexity. The proposed method is also evaluated via simulations in terms of symbol error rate (SER) performance and compared with the conventional EDAS methods in QSM systems.

Optical Determination of the Heavy-hole Effective Mass of (in, Ga)As/GaAs Quantum Wells

  • Lee, Kyu-Seok;Lee, El-Hang
    • ETRI Journal
    • /
    • v.17 no.4
    • /
    • pp.13-24
    • /
    • 1996
  • We determine the reduced mass of heavy-hole exciton and the heavy-hole in-plane mass for a series of (In, Ga)As/GaAs strained layer quantum wells using the magnetolu-minescence measurements of the exciton ground state and the modified perturbation approach. In the theoretical calculation of the magnetoexciton ground state, the exciton reduced mass is considered as an adjustable parameter, and two variation parameters are used in the unperturbed wave function which is expressed in terms of subband wave functions in the growth axis and the product of two-dimensional hydrogen and oscillator like wave functions for the in-plane component. We take into account the energy dependence of transverse and in-plane electron masses in the twoband effective mass approximation. The electron effective mass decreases as either quantum-well width or indium composition increases, and so does the heavy-hole in-plane mass down to the value at the decoupling limit ($m_{hh,\;{\rho}}=0.11m_0$).

  • PDF

Fuzzy Nonlinear Adaptive Control of Overhead Cranes for Anti-Sway Trajectory Tracking and High-Speed Hoisting Motion (고속 권상운동과 흔들림억제 궤적추종을 위한 천정주행 크레인의 퍼지 비선형 적응제어)

  • Park, Mun-Soo;Chwa, Dong-Kyoung;Hong, Suk-Kyo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.582-590
    • /
    • 2007
  • Nonlinear adaptive control of overhead cranes is investigated for anti-sway trajectory tracking with high-speed hoisting motion. The sway dynamics of two dimensional underactuated overhead cranes is heavily coupled with the trolley acceleration, hoisting rope length, and the hoisting velocity which is an obstacle in the design of decoupling control based anti-sway trajectory tracking control law To cope with this obstacle. we propose a fuzzy nonlinear adaptive anti-sway trajectory tracking control law guaranteeing the uniform ultimate boundedness of the sway dynamics even in the presence of uncertainties in such a way that it cancels the effect of the trolley acceleration and hoisting velocity on the sway dynamics. In particular. system uncertainties, including system parameter uncertainty unmodelled dynamics, and external disturbances, are compensated in an adaptive manner by utilizing fuzzy uncertainty observers. Accordingly, the ultimate bound of the tracking errors and the sway angle decrease to zero when the fuzzy approximation errors decrease to zero. Finally, numerical simulations are performed to confirm the effectiveness of the proposed scheme.