Optical Determination of the Heavy-hole Effective Mass of (in, Ga)As/GaAs Quantum Wells

  • Published : 1996.01.20

Abstract

We determine the reduced mass of heavy-hole exciton and the heavy-hole in-plane mass for a series of (In, Ga)As/GaAs strained layer quantum wells using the magnetolu-minescence measurements of the exciton ground state and the modified perturbation approach. In the theoretical calculation of the magnetoexciton ground state, the exciton reduced mass is considered as an adjustable parameter, and two variation parameters are used in the unperturbed wave function which is expressed in terms of subband wave functions in the growth axis and the product of two-dimensional hydrogen and oscillator like wave functions for the in-plane component. We take into account the energy dependence of transverse and in-plane electron masses in the twoband effective mass approximation. The electron effective mass decreases as either quantum-well width or indium composition increases, and so does the heavy-hole in-plane mass down to the value at the decoupling limit ($m_{hh,\;{\rho}}=0.11m_0$).

Keywords

References

  1. AT&T Tech. J. no.Nov./Dec. Strained-layer semiconductor research and development at Sandia Peercy, P.S.
  2. Appl. Phys. Lett. v.53 no.25 Cyclostron resonance measurements of electron effective mass in strained Al-GaAs/InGaAs/GaAs pseudomorphic structures Liu, C.T.;Lin, S.Y.;Tsui, D.C.;Lee, K.;Ackley, D.
  3. Appl. Phys. Lett. v.54 no.22 Determination of energy-band dispersion curves in strained-layer structures Jones, E.D.;Lyo, S.K.;Fritz, I.J.;Klem, J.F.;Schirber, J.E.;Tigges, C.P.;Drummond, T.J.
  4. Phys. Rev. B v.38 no.5 Photoreflectance study of narrow-well strained-layer $In_XGa_{1-X}As/GaAs$ coupled multiple- quantum-well structures Pan, S.H.;Shen, H.;Hang, Z.;Pollak, F.H.;Zhuang, W.;Xu, Q.;Roth, A.P.;Masut, R.A.;Lacelle, C.;Morris, D.
  5. Phys. Rev. B v.41 no.2 Observation and calculations of the exciton binding energy in (In, Ga)As/GaAs strainedquantum-well heterostructures Moore, K.J.;Duggan, G.;Woodbridge, K.;Roberts, C.
  6. Phys. Rev. B v.48 no.4 Enhancement of the in-plane effective mass of electrons in modulation-doped $In_XGa_{1-X}As$ quantum wells due to confinement effects Hendorfer, G.;Seto, M.;Ruchser, H.;Jantsch, W.;Helm, M.;Brunthaler, G.;Jost, W.;Obloh, H.;Kohler, K.;As, D.J.
  7. Phys. Rev. B v.48 no.8 Magnetooptical studies of strain effects on the excitons in $In_xGa_{1-x}As/Al_yGa_{1-y}As$ strained quantumwells Zhou, W.;Dutta, M.;Smith, D.D.;Pamulapati, J.;Shen, H.;Newman, P.;Sacks, R.
  8. Phys. Rev. B v.50 no.12 Zeeman splitting of the excitonic recombination in $In_xGa-{1-x}As/GaAs$ single quantum wells Wimbauer, Th.;Oettinger, K.;Efros, Al.E.;Meyer, B.K.;Brugger, H.
  9. Phys. Rev. B v.34 no.6 Magneto-optics in $GaAs-Ga_{1-x}Al_xAs$ quantum wells Rogers, D.C.;Singleton, J.;Nicholas, R.J.;Foxon, C.T.;Woodbridge, K.
  10. Phys. Rev. B v.38 no.2 Observation of decoupled heavy and light holes in $GaAs-Ga_{1-x}Al_xAs$ quantum wells by magnetore-flectivity Plaut, A.S.;Singleton, J.;Nicholas, R.J.;Harley, R.T.;Andrews, S.R.;Foxon, C.T.B.
  11. Phys. Rev. B v.39 no.15 Diamagnetism as a probe of exciton localization in quantum wells Nash, K.J.;Skolnick, M.S.;Claxton, P.A.;Roberts, J.S.
  12. Phys. Rev. B v.40 no.15 Magnetoexciton ground state in a quantum well: A variational and perturbational approach Zhang, X.L.;Heiman, D.;Lax, B.
  13. Phys. Rev. B v.46 no.16 Modified perturbational method for the magnetoexciton ground state in quantum wells Lee, K.S.;Aoyagi, Y.;Sugano, T.
  14. J. Appl. Phys. v.76 no.10 Determination of the reduced mass of the exciton ground state in a quantum well Lee, K.S.;Lee, E.H.
  15. J. Appl. Phys. v.78 no.10 Optical determination of heavy-hole effective mass and exciton binding energy for a $Si_{0.83}Ge_{0.17}/Si$ quantum well Lee, H.;Jones, E.D.;Krutz, S.R.;Schmiedel, T.;Houghton, D.C.;Lee, K.S.
  16. Phys. Rev. B v.48 no.12 Theory of the electronic properties of ${\delta}-doped$ layers with DX centers in semiconductor heterostrucutres Lazzouni, M.E.;Sham, L.J.
  17. Wimbauer, Th.
  18. Handbook of mathematical functions Abramowitz, M.(ed.);Stegun, I.A.(ed.)
  19. J. Appl. Phys. v.58 no.3 GaAs, AlAs, and $Al_xGa_{1-x}As:$ Material parameters for use in research and device applications Adachi, S.
  20. Numerical data and Functional Relations in Science and Technology, vol. 22 Landolt-Bornstein;Madelung, O.(ed.);Schulz, M.(ed.);Weiss, H.(ed.)
  21. J. Appl. Phys. v.53 no.12 Material parameters of $In_{1-x}Ga_xAl_yP_{1-y}$ and related binarie Adachi, S.
  22. Superlatt. & Microst. no.5 Transmission and photoreflectance spectra in highly strained InGaAs-GaAs multiple quantum wells Ji, G.;Reddy, U.K.;Huang, D.;Henderson, T.S.;Morkoc, H.
  23. Properties of lattice matched and strained indium gallium arsenide, EMIS Datareviews Series no. 8, in section 3.5 Bhattacharya, P.(ed.)