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Abstract 

In this work, an efficient transmit antenna selection approach for the quadrature spatial modulation (QSM) 

systems is proposed. The conventional Euclidean distance antenna selection (EDAS)-based schemes in QSM 

have too high computational complexity for practical use. The proposed antenna selection algorithm is 

based on approximation of the EDAS decision metric employed for QSM. The elimination of imaginary parts 

in the decision metric enables decoupling of the approximated decision metric, which enormously reduces 

the complexity. The proposed method is also evaluated via simulations in terms of symbol error rate (SER) 

performance and compared with the conventional EDAS methods in QSM systems. 

 

Keywords: Quadrature spatial modulation (QSM), spatial modulation (SM), transmit antenna selection, Euclidean 

distance antenna selection (EDAS) 

 
1. Introduction 

Spatial modulation (SM) is an attractive multiple input multiple output (MIMO) technique that reduces the 

system complexity and cost associated with implementation of conventional MIMO communication systems 

[1]  [3]. This is achieved by activating only one transmit antenna out of TN  transmit antennas per one 

symbol interval. It results in elimination of inter-channel interference at the receiver and synchronization 

between transmit antennas. In SM, transmit antennas are exploited as a spatial constellation dimension to 

convey additional information bits. Thus its overall spectral efficiency can be defined as  2log TMN , where 

M is the symbol constellation size. Since SM multiplexing gain is proportional to the base-two logarithm of 

TN  transmit antennas, a novel transmission technique called quadrature spatial modulation (QSM) has been 

proposed to enhance the spectral efficiency of SM [4], [5]. In QSM, spatial constellation symbols are 

transmitted while utilizing both quadrature dimension and in-phase dimension. Consequently, it is possible to 

transmit  2

2log TM N  bits during one transmit time. 
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Since the SM scheme cannot offer the transmit diversity, some researchers have examined transmit 

antenna selection techniques to achieve transmit-diversity gains [6]  [9]. In [6], [7], and [8], the Euclidean 

distance antenna selection (EDAS) criterion to maximize the minimum instantaneous Euclidean distance has 

been employed to improve the performance of the SM systems. On the other hand, a recent research on 

transmit antenna selection schemes for QSM systems has been conducted [10]. However, the antenna 

selection methods presented in [10] require still high computational complexity and thus are limited for 

practical applications. Motivated by the high complexity of the EDAS-based schemes for QSM, we consider 

an efficient antenna selection approach to substantially reduce the complexity of optimization. The proposed 

approximation algorithm is obtained by ignoring the imaginary parts in EDAS decision metric. Thus the 

decision metric can be decoupled and it results in tremendous reduction of the complexity compared to the 

EDAS-based scheme with low complexity in [10]. In this work, a trade-off between symbol error rate (SER) 

performance and computational complexity is investigated. It is shown that the SER performance of the 

proposed method is better than that of the conventional EDAS approaches for QSM systems with sufficiently 

large number of receive antennas. 

 
2. System Model 

A transmit antenna selection-based QSM scheme is considered in a R TN N  MIMO configuration, 

where TN  and RN , respectively, denote the number of transmit and receive antennas. Here  S TN N  

antennas out of TN  transmit antennas are selected. For QSM transmission,  2

2log SM N  data bits are used. 

They are partitioned into three groups. The first one contains  2log M  bits, which is mapped into a 

transmit QAM symbol. The other two ones where each contains  2log SN  bits are mapped into real and 

quadrature spatial constellation symbols. The symbol s , which is the transmit symbol from QAM symbol 

set S , is further divided to its real  Rs  and imaginary  Qs  parts. 

Therefore, the 1SN   QAM transmit symbol vector x  can be expressed as R Qjx x , where Rx  and 

Qx , respectively, are denoted by 
Rk Rse  and 

Qk Qse , , 1,2, ,R Q Sk k N . Here 
Rke  and 

Qke  are 1SN   

vectors with one non-zero entry at the Rk th and Qk th locations, respectively. The transmitted vector x  is 

sent over an R SN N  MIMO wireless channel SH . The elements of SH  are independent and identically 

distributed (i.i.d.) random variables with circularly symmetric complex-valued Gaussian distribution 

 0,1CN . It experiences an additive white Gaussian noise (AWGN). The complex AWGN vector with RN  

dimension is denoted by w  with i.i.d. entries wp  ~ CN(0,N0) ,  1,2, , Rp N , where 0N  is the noise 

variance. Then the 1RN   received signal vector y  is given by 

 

 S R S Qj  y H x H x w                                (1) 

 

where 1 2 R

T

Nw w w   w . 
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3. Euclidean Distance-Based Antenna Selection for QSM systems 

3.1 Euclidean Distance-Based Antenna Selection for QSM systems in [10] 

The Euclidean distance-based decision metric for transmit antenna selection in QSM systems involves 

maximizing the minimum Euclidean distance among all possible transmit symbol vectors and is given by 

 

    
1 2

2

1 2 1 2arg max minED I R R I Q Q
X FI

I j
 

   
x x

H x x H x x                   (2) 

 

where   denotes the set of enumerations of all possible T

S

N

search NN B  combinations of selecting SN  

antennas from TN  transmit antennas. Here T

S

N

NB  represents the number of SN  combinations from TN  

elements. IH  is the R SN N  channel gain matrix associated with the I th enumeration of the set   and 

expressed as 
(1) (2) ( ), , ,

SI N
   H h h h . Here 

( )th , 1,2, , St N , is the t th column vector of IH . X  is 

the set of all possible QSM transmit symbol vectors. Further details on EDAS in QSM systems can be found 

in [10]. 

The computation associated with the exhaustive search based on EDAS in QSM systems (called 

QSM-EDAS-ES) results in huge complexity and it is given by 

 

    2

2 2 12 2S ST

S

N NN

QSM EDAS ES N S S RC B B N B N N M                         (3) 

 

The computational complexity analysis is similar to that performed in terms of floating point operations in 

[8] and [10]. In this work, real multiplications instead of complex multiplications are employed in 

complexity analysis. 

 

3.2 EDAS for QSM with reduced complexity [10] 

To significantly reduce the complexity of QSM-EDAS-ES, an upper triangular T TN N  matrix   only 

once before searching for EDI  can be computed for the present. This reduced algorithm is called 

QSM-EDAS-R and the ( , )m n  th element of the matrix   is calculated by 

 

1 2
, ( , )

    Re( )
  ( ) ( )
     1,2, ,

, 1, ,

min
R R

R R

Q T

Q Q Q T

T

m n m n
s s S

m m n n
m N

n m m N

   
 

     
 

   

  s Ξ s , m n                           (4) 

 

, ( , )
  ( ) ( )
     1,2, ,

, 1, ,

min
R R

Q T

Q Q Q T

T

m n m n
m m n n

m N

n m m N

   
     
 

   

  s Ξ s , m n                           (5) 

 

where 1 1 2 2

T

R Q R Qs s s s    s , ( , ) ( , ) ( , )

H

m n m n m n     Ξ Ξ Ξ  and 
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( , )

R Q R Q

R Q R Q

m R m Q n R n Q

m n

m Q m R n Q n R

   

 

   

  
  
  

h h h h
Ξ

h h h h
                         (6) 

 

where  Re
R Rm R m h h ,  Im

R Rm Q m h h ,  Re
R Rn R n h h ,  Im

R Rn Q n h h ,  Re
Q Qm R m h h , 

 Im
Q Qm Q m h h ,  Re

Q Qn R n h h , and  Im
Q Qn Q n h h  for , 1,2, ,R Q Tm m N   , , 1, ,R R R Tn m m N    , 

, 1, ,Q Q Q Tn m m N    . Here 
t h , 1,2, , Tt N  , is the t th column vector of an R TN N  channel matrix 

H . Then the approximate complexity of QSM-EDAS-R is given by 

 

      2

2 23 2 1 51 2T TN N

QSM EDAS R T R T TC N N B N B N M                       (7) 

 
4. Further Complexity Reduction Algorithm for QSM systems 

Because the complexity of QSM-EDAS-R is still huge, we propose an approximated method to further 

reduce its complexity. To do that, (4) and (5) can be rewritten as, respectively, 

 

 
1 2

2

,
    Re( )
  ( ) ( )
     1,2, ,

, 1, ,

min
R R

R R

Q T

Q Q Q T

m n R Q Fs s S
m m n n

m N

n m m N

j 
 

     
 

   

     , m n                       (8) 

 

 2

,
  ( ) ( )
     1,2, ,

, 1, ,

min
R R

Q T

Q Q Q T

m n R Q Fm m n n
m N

n m m N

j 
     
 

   

     , m n                       (9) 

 

where 

 
22

1 1 2 2R Q R QR Q m R m Q n R n QF F
j s j s s j s         h h h h                  (10) 

 

1

2
R R

R

R m n

R

s

s
 

 
      

 
h h                              (11) 

 

 

1

2
Q Q

Q

Q m n

Q

s

s
 

 
      

 
h h                              (12) 

 

To simplify QSM-EDAS-R, we do not consider two terms,  H H

R Q Q Rj     , in the expression (10) and 

thus it results in decoupling R  from 
Q . This decoupling process can significantly reduce the 
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computational complexity of QSM-EDAS-R. Then, by removing  H H

R Q Q Rj      in (10), it can be 

approximately simplified as 

 
2 22

R Q R QFF F
j                                 (13) 

 

Note that 
22

R QF F
   . Thus 

 
22 2

2

2

                          2
R R

R Q RF FF

m n R
F

 

    

 Β s

                          (14) 

 

where 

 

R R R Rm n m n   
   Β h h                               (15) 

 

1

2

R

R

R

s

s

 
  
 

s                                   (16) 

 

Eventually, (8) and (9) can be simply described as 

 

1 2

2

,
    Re( )
  ( ) ( )

min 2
R R

R R

R R

m n m n R
Fs s S

m m n n

   
 

     

  Β s , m n                        (17) 

 
2

,
  ( ) ( )

min 2
R R

R R
m n m n R

Fm m n n
   

     
  Β s , m n                        (18) 

 

where 

 

 

2
2 2

1 2 1 2 1 2

2 2

1 2 1 2                   2Re

R R R R R R R R R R

R R R R R R

H H H H

m n R m m R n n R m n R R n m R R
F

H H H

m m R n n R m n R R

s s s s s s

s s s s

         

     

   

  

Β s h h h h h h h h

h h h h h h
              (19) 

 

The simplified EDAS algorithm for QSM with further complexity reduction is called QSM-EDAS-S. Then 

the complexity of QSM-EDAS-S can be computed as 

 

     2

23 2 1 5 2TN

QSM EDAS S T R TC N N B N M                          (20) 

 

where the rotational symmetry of angle 0   in [9] is exploited. 
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5. Simulation Results 

Now we compare the computational complexity of the proposed algorithm with those of QSM-EDAS-ES, 

QSM-EDAS-R, and the exhaustive search method based on EDAS in SM systems (called SM-EDAS-ES), 

which are given in Tables 1, 2, and 3. It is noted that the count of real multiplications is included in the 

complexity. Table 1 gives the number of flops for 6TN  , 4SN  , and 2RN   with 4-QAM and 

16-QAM. In Tables 2 and 3, the other parameters except for 4RN   and 6RN  , respectively, in the 

simulation setups employ the same ones as Table 1. From Tables 1, 2, and 3, it is shown that QSM-EDAS-S 

approximately achieves 84, 47, and 33 times, respectively, smaller complexity than QSM-EDAS-R. 

Consequently, the proposed QSM-EDAS-S algorithm can reduce the computational complexity significantly 

compared to the previous antenna selection method for QSM systems such as QSM-EDAS-R. Furthermore, 

for the purpose of fair comparison with SM-EDAS-ES, the same data rate per channel use is assumed. That 

is, QSM systems with 4-QAM should be compared with SM systems with 16-QAM as indicated in the 

highlighted cells of Tables. It is found that the proposed method provides tremendously lower complexity 

than SM-EDAS-ES. 

 

Table 1. Computational Complexity for 6TN  , 4SN  , 2RN   

 
SM EDAS ESC    

QSM EDAS ESC    QSM EDAS RC    QSM EDAS SC    

4-QAM 4560 624000 45306 534 

16-QAM 72960 9984000 180252 1164 

 

Table 2. Computational Complexity for 6TN  , 4SN  , 4RN   

 
SM EDAS ESC    

QSM EDAS ESC    QSM EDAS RC    QSM EDAS SC    

4-QAM 9360 1200000 45738 966 

16-QAM 149760 19200000 180684 1596 

 

Table 3. Computational Complexity for 6TN  , 4SN  , 6RN   

 
SM EDAS ESC    

QSM EDAS ESC    QSM EDAS RC    QSM EDAS SC    

4-QAM 14160 1776000 46170 1398 

16-QAM 226560 28416000 181116 2028 

 

Performance evaluation of the proposed QSM-EDAS-S algorithm is presented to compare the 

performances of QSM-EDAS-ES and QSM-EDAS-R. In the simulation results, the SER is depicted as a 

function of the 0sE N  in decibels with sE  denoting the QAM signal symbol energy. Three numbers of 

receive antennas are also considered, i.e., 2RN  , 4RN  , and 6RN  , which are shown in Figures 1 3, 

respectively. The spectral efficiency given by a rate of 6 bits per channel use is assumed in all scenarios. For 

all simulations, the QSM systems use 4-QAM. A maximum-likelihood detector is employed at the receiver 

for QSM systems. It jointly estimates the indices of the activated antennas and the symbol transmitted from 

them. Figure 1 describes the SER performance curves based on Monte Carlo simulations of QSM-EDAS-ES, 

QSM-EDAS-R, and the proposed QSM-EDAS-S for QSM with 6TN   and 4SN  . It is seen that 
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QSM-EDAS-S outperforms the case with no antenna selection in QSM by about 2.5 dB in 0sE N  values. 

It is also shown that it offers slightly better performance than QSM-EDAS-R for a less 0sE N  range than 

17 dB while worse for a larger region than 0 17sE N  dB. In this case, QSM-EDAS-S experiences 

considerable performance loss compared with QSM-EDAS-ES, which is due to the ignorance of two terms, 

 H H

R Q Q Rj     , in the expression (10). In the Figure 2 and Figure 3, respectively, four and six receive 

antennas are assumed with the same other parameters as in Figure 1. It is observed in Figure 2 that the 

performance of QSM-EDAS-S is slightly better than that of QSM-EDAS-R for the given 0sE N  values. 

Figure 3 shows that although QSM-EDAS-S has a significantly lower complexity, it achieves about 0.7 dB 

better performance than QSM-EDAS-R. The main conclusion that can be drawn by observing Figures 1, 2, 

and 3 is as follows: The proposed algorithm is more beneficial than QSM-EDAS-R as the number of receive 

antennas increases. 
 

 

Figure 1. SER performance comparison of QSM-EDAS-ES, QSM-EDAS-R, and QSM-EDAS-S 

algorithms for 6TN  , 4SN  , and 2RN   

 

Figure 2. SER performance comparison of QSM-EDAS-ES, QSM-EDAS-R, and QSM-EDAS-S 

algorithms for 6TN  , 4SN  , and 4RN   
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Figure 3. SER performance comparison of QSM-EDAS-ES, QSM-EDAS-R, and QSM-EDAS-S 

algorithms for 6TN  , 4SN  , and 6RN   

 

6. Conclusion 

In this work, we have proposed a simplified EDAS algorithm through decoupling operation of EDAS to 

tremendously reduce the complexity. The approximation process has been conducted by removing the 

imaginary parts of the EDAS-based decision metric. The impacts of this elimination on the SER performance 

are minor for the given scenario especially with 6RN  . On the other hand, the computational complexity 

of the proposed algorithm is reduced to about 1/33 ~ 1/84 of the original reduced EDAS algorithm for QSM 

[10]. Hence the proposed method offers a promising trade-off between SER performance and computational 

complexity. 
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