• Title/Summary/Keyword: Decolorization

Search Result 322, Processing Time 0.026 seconds

Genetic Diversity and Dye-Decolorizing Spectrum of Schizophyllum commune Population

  • Choi, Yongjun;Nguyen, Ha Thi Kim;Lee, Tae Soo;Kim, Jae Kwang;Choi, Jaehyuk
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.10
    • /
    • pp.1525-1535
    • /
    • 2020
  • Synthetic dyes are widely used in various industries and their wastage causes severe environmental problems while being hazardous to human health, leading to the need for eco-friendly degradation techniques. The split-gill fungus Schizophyllum commune, which is found worldwide, has the potential to degrade all components of the lignocellulosic biomass and is a candidate for the treatment of synthetic dyes. A systematic molecular analysis of 75 Korean and 6 foreign S. commune strains has revealed the high genetic diversity of this population and its important contribution to the total diversity of S. commune. We examined the dye decolorization ability of this population and revealed 5 excellent strains that strongly decolorized 3 dyes: Crystal Violet, Congo Red and Methylene Blue. Finally, comparison of dye decolorization ability and the phylogenetic identification of these strains generalized their genetic and physiological diversity. This study provides an initial resource for physiological and genetic research projects as well as the bioremediation of textile dyes.

Microwave-assisted Fenton degradation of methylene blue (마이크로웨이브를 이용한 메틸렌 블루의 펜톤산화)

  • Kim, Shin-Young;Ahn, Johng-Hwa
    • Journal of Industrial Technology
    • /
    • v.37 no.1
    • /
    • pp.21-26
    • /
    • 2017
  • This work experimentally determined the effect of combining of microwave irradiation and the Fenton process on decolorization of methylene blue ($C_{16}H_{18}N_3SCl$, MB). As [$H_2O_2$] increased from 2.65 to 4.41 mM, the decolorization of MB increased from 22.7 to 99.1%. As [$Fe^{2+}$] increased from 0.07 to 0.18 mM, the decolorization of MB increased from 24.0 to 98.5%. MB removal efficiencies were ${\geq}95%$ at $[H_2O_2]{\geq}3.5mM$ and $3.5{\leq}[H_2O_2]/[Fe^{2+}]{\leq}17.3$, but $[H_2O_2]/[Fe^{2+}]{\geq}20$ caused a decrease in MB removal. A two-stage kinetic model matched the experimental data well.

Decolorization of Dyehouse Effluent and Biodegradation of Congo Red by Bacillus thuringiensis RUN1

  • Olukanni, O.D.;Osuntoki, A.A.;Awotula, A.O.;Kalyani, D.C.;Gbenle, G.O.;Govindwar, S.P.
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.6
    • /
    • pp.843-849
    • /
    • 2013
  • A dye-decolorizing bacterium was isolated from a soil sample and identified as Bacillus thuringiensis using 16S rRNA sequencing. The bacterium was able to decolorize three different textile dyes, namely, Reactive blue 13, Reactive red 58, and Reactive yellow 42, and a real dyehouse effluent up to 80-95% within 6 h. Some non-textile industrially important dyes were also decolorized to different extents. Fourier transform infrared spectroscopy and gas chromatography-mass spectrometer analysis of the ethyl acetate extract of Congo red dye and its metabolites showed that the bacterium could degrade it by the asymmetric cleavage of the azo bonds to yield sodium (4-amino-3-diazenylnaphthalene-1-sulfonate) and phenylbenzene. Sodium (4-amino-3-diazenylnaphthalene-1-sulfonate) was further oxidized by the ortho-cleavage pathway to yield 2-(1-amino-2-diazenyl-2-formylvinyl) benzoic acid. There was induction of the activities of laccase and azoreductase during the decolorization of Congo red, which suggests their probable role in the biodegradation. B. thuringiensis was found to be versatile and could be used for industrial effluent biodegradation.

Visible Light Photoelectrocatalytic Properties of Novel Yttrium Treated Carbon Nanotube/Titania Composite Electrodes

  • Zhang, Feng-Jun;Chen, Ming-Liang;Zhang, Kan;Oh, Won-Chun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.133-139
    • /
    • 2010
  • Photoelectrocatalytic decolorization of methlene blue (MB) in the presence of two types of carbon nanotube/titania and yttrium-treated carbon nanotube/titania electrodes in aqueous solutions were studied under visible light. The prepared composite electrodes were characterized by X-ray diffraction, transmission and scanning electron microscopy, energy dispersive X-ray analysis, and photoelectrocatalytic activity. The photoelectrocatalytic performances of the supported catalysts were evaluated for the decolorization of MB solution under visible light irradiation. The results showed that yttrium incorporation enhanced the decolorization rate of MB. It was found that the photoelectrocatalytic degradation of a MB solution could be attributed to the combined effects caused by the photo-degradation of titania, the electron assistance of carbon nanotube network, the enhancement of yttrium and a function of the applied potential. The repeatability of photocatalytic activity was also tested. The presence of yttrium enhanced the hydrophillicity of yttrium-carbon nanotubes/titania electrode because more OH groups can be adsorbed on the surface.

Purification and Characterization of Manganese Peroxidase of the White-Rot Fungus Irpex lacteus

  • Shin Kwang-Soo;Kim Young Hwan;Lim Jong-Soon
    • Journal of Microbiology
    • /
    • v.43 no.6
    • /
    • pp.503-509
    • /
    • 2005
  • The production of manganese peroxidase (MnP) by Irpex lacteus, purified to electrophoretic homogeneity by acetone precipitation, HiPrep Q and HiPrep Sephacryl S-200 chromatography, was shown to correlate with the decolorization of textile industry wastewater. The MnP was purified 11.0-fold, with an overall yield of $24.3\%$. The molecular mass of the native enzyme, as determined by gel filtration chromatography, was about 53 kDa. The enzyme was shown to have a molecular mass of 53.2 and 38.3 kDa on SDS-PAGE and MALDI-TOF mass spectrometry, respectively, and an isoelectric point of about 3.7. The enzyme was optimally active at pH 6.0 and between 30 and $40^{\circ}C$. The enzyme efficiently catalyzed the decolorization of various artificial dyes and oxidized Mn (II) to Mn (III) in the presence of $H_2O_2$. The absorption spectrum of the enzyme exhibited maxima at 407, 500, and 640 nm. The amino acid sequence of the three tryptic peptides was analyzed by ESI Q- TOF MS/MS spectrometry, and showed low similarity to those of the extracellular peroxidases of other white-rot basidiomycetes.

Photocatalytic Decolorization of Dye usingUV/TiO2 and Fluidized Bed Reactor (UV/TiO2와 유동층 반응기를 이용한 안료의 광촉매 탈색)

  • Park Young-Seek
    • Journal of Environmental Science International
    • /
    • v.13 no.10
    • /
    • pp.921-928
    • /
    • 2004
  • The photocatalytic decolorization of Rhodamine B (RhB) was studied using immobilized $TiO_2$ and fluidized bed reactor. Immobilized $TiO_2$(length: 1$\~$2 mm, width: 1$\~$3 mm, thickness: 0.5$\~$2 mm) onto silicone sealant was employed as the photocatalyst and a 30 W germicidal lamp was used as the light source and the reactor volume was 4.8 L. The effects of parameters such as the amounts of photocatalyst, initial concentration, initial pH, superficial velocity, $H_2O_2$ and anion additives. ($NO_3^{-},\;SO_4^{2-},\;Cl^{-},\;CO_3^{2-}$) The results showed that the optimum dosage of the immobilized $TiO_2$ were 87.0 g/L. Initial removal rate of RhB of the immobilized $TiO_2$ was 1.5 times higher than that of the powder $TiO_2$ because of the adsorption onto the surface of immobilized $TiO_2$ In the conditions of acidic pH, initial reaction rate was increased slowly and reaction time was shorted. The effect of anion type on the reaction rate was not much.

Color Removal of Rhodamine B by Photoelectrocatalytic Process Using Immobilized TiO2 (고정화 광촉매를 이용한 광전기촉매 공정에서 Rhodamine B의 색도 제거)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.3
    • /
    • pp.226-232
    • /
    • 2008
  • A feasibility study for the application of the photoelectrocatalytic decolorization of Rhodamine B (RhB) was performed in a photoelectrochemical reactor with immobilized $TiO_2$ particle. The effects of operating conditions, such as current, electrolyte and pH were evaluated. The experimental results showed that optimum $TiO_2$ dosage and current in the photoelectrocatalytic process were 83.3 g/l and 0.5 A, respectively. It was found that the RhB could be degraded more efficiently by this photoelectrocatalytic process than the sum of the two individual oxidation processes (photocatalytic and electrolytic process). The addition of NaCl increased the initial decolorization rate and reduced reaction time. The optimum dosage of NaCl was 0.15 g/l. The decolorization rate of the photoelectrocatalytic process increased sharply with a decrease in pH value. However when the NaCl was added, the pH effect was not high.

Biodegradation of Evercion Blue P-GR and Ostazin Black H-GRN in synthetic textile wastewater by membrane bioreactor system using Trametes versicolor

  • Gul, Ulkuye D.;Acikgoz, Caglayan;Ozan, Kadir
    • Advances in environmental research
    • /
    • v.9 no.2
    • /
    • pp.85-95
    • /
    • 2020
  • In this study, the decolorization of Evercion Blue P-GR (EBP) and Ostazin Black H-GRN (OBH) was investigated using white-rot fungi named as Trametes versicolor (T. versicolor) by Membrane Bioreactor (MBR) system. This study involved experiments employing synthetic textile wastewater in Membrane Bioreactor (MBR) system (170 ml), initially inoculated with a pure culture of fungi, but operated, other than controlling pH (4.5±0.2) and temperature (25±1℃), under non-sterile conditions. The effect of dye concentrations on fungal biodegradation was also investigated. The decolorization efficiencies were 98%, 90%, and 87% respectively, for EBP when the initial dye concentration of 50, 100, and 200 mg L-1 were used. However, the decolorization percentages for OBH dye were obtained 95% for 50 mg L-1 dye solution in 2 days and 66% for 100 mg L-1 dye solution in 5 days. Possible interactions between dye molecules and the fungal surface were confirmed by SEM, EDX, and FTIR analyses.

Potential Use of Probiotic Consortium Isolated from Kefir for Textile Azo Dye Decolorization

  • Ayed, Lamia;Zmantar, Tarek;Bayar, Sihem;Charef, Abdelkrim;Achour, Sami;Mansour, Hedi Ben;Mzoughi, Ridha El
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.10
    • /
    • pp.1629-1635
    • /
    • 2019
  • Azo dyes are recalcitrant pollutants, which are toxic, carcinogenic, mutagenic and teratogenic, that constitute a significant burden to the environment. The decolorization and the mineralization efficiency of Remazol Brillant Orange 3R (RBO 3R) was studied using a probiotic consortium (Lactobacillus acidophilus and Lactobacillus plantarum). Biodegradation of RBO 3R (750 ppm) was investigated under shaking condition in Mineral Salt Medium (MSM) solution at pH 11.5 and temperature $25^{\circ}C$. The bio-decolorization process was further confirmed by FTIR and UV-Vis analysis. Under optimal conditions, the bacterial consortium was able to decolorize the dye completely (>99%) within 12 h. The color removal was 99.37% at 750 ppm. Muliplex PCR technique was used to detect the Lactobacillus genes. Using phytotoxicity, cytotoxicity, mutagenicity and biototoxicity endpoints, toxicological studies of RBO 3R before and after biodegradation were examined. A toxicity assay signaled that biodegradation led to detoxification of RBO 3R dye.

Effect of Cadium Ions on the Activity of Fungal Laccase and Its Decolorization of Dye, RBBR

  • Jarosz-Wilkolazka, A.;Malarczyk, E.;Leonowicz, A.;Cho, Nam-Seok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.14-22
    • /
    • 2004
  • The effect of cadmium ions on ligninolytic and decolourizing activities in cultures of two white-rot fungi, Cerrena unicolor and Trametes versicolor, were examined. Cadmium was added to the shallow stationary cultures growing on a liquid mineral medium. Both examined strains sorbed Cd ions in the first 24 hr of incubation. An appreciable stimulation of the activity of extracellular laccase (LAC) and inhibition of the extracellular manganese-dependent peroxidase (MnP) were simultaneously observed when 25 mgL-1 and 50 mgL-1 of cadmium ions were added to the cultures. On the other hand, the addition of cadmium ions also resulted in stimulating the decolorization activity of C. unicolor to decolorize Remazol Brilliant Blue R (RBBR) in the cultures, but decreasing it in the culture of T. versicolor, which is compared to the inhibition of MnP activity in this fungus. Our data indicate that the presence of Cd(II) ions can affect the ligninolytic activity of white-rot fungi. It was found that C. unicolor is a strain resistant to the presence of Cd ions in the liquid culture media, and has a potential to use this strain for bioremediation of sites contaminated with both heavy metals and aromatic pollutants.