DOI QR코드

DOI QR Code

Visible Light Photoelectrocatalytic Properties of Novel Yttrium Treated Carbon Nanotube/Titania Composite Electrodes

  • Zhang, Feng-Jun (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Chen, Ming-Liang (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Zhang, Kan (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Oh, Won-Chun (Department of Advanced Materials & Science Engineering, Hanseo University)
  • Published : 2010.01.20

Abstract

Photoelectrocatalytic decolorization of methlene blue (MB) in the presence of two types of carbon nanotube/titania and yttrium-treated carbon nanotube/titania electrodes in aqueous solutions were studied under visible light. The prepared composite electrodes were characterized by X-ray diffraction, transmission and scanning electron microscopy, energy dispersive X-ray analysis, and photoelectrocatalytic activity. The photoelectrocatalytic performances of the supported catalysts were evaluated for the decolorization of MB solution under visible light irradiation. The results showed that yttrium incorporation enhanced the decolorization rate of MB. It was found that the photoelectrocatalytic degradation of a MB solution could be attributed to the combined effects caused by the photo-degradation of titania, the electron assistance of carbon nanotube network, the enhancement of yttrium and a function of the applied potential. The repeatability of photocatalytic activity was also tested. The presence of yttrium enhanced the hydrophillicity of yttrium-carbon nanotubes/titania electrode because more OH groups can be adsorbed on the surface.

Keywords

References

  1. Chen, L. C.; Ho, Y. C.; Guo, W. S. Electrochim. Acta 2009, 54, 3884. https://doi.org/10.1016/j.electacta.2009.02.001
  2. Hamal, D. B.; Klabunde. K. J. J. Colloid Interf. Sci. 2007, 311, 514. https://doi.org/10.1016/j.jcis.2007.03.001
  3. Carp, O.; Huisman, C. L.; Reller, A. Prog. Solid State Chem. 2004, 32, 33. https://doi.org/10.1016/j.progsolidstchem.2004.08.001
  4. Wang, W. D.; Serp, P.; Kalck, P. J. Mole. Catal. A Chem. 2005, 235, 194. https://doi.org/10.1016/j.molcata.2005.02.027
  5. Neren O¨ kte, A.; O¨ zge, Y. Appl. Catal. B: Environ. 2008, 85, 92. https://doi.org/10.1016/j.apcatb.2008.07.025
  6. Bhattachayya, A.; Kawi, S.; Ray, M. B. Catal. Today 2004, 98, 431. https://doi.org/10.1016/j.cattod.2004.08.010
  7. Yoneyama, H.; Torimoto, T. Catal. Today 2000, 58, 133. https://doi.org/10.1016/S0920-5861(00)00248-0
  8. Fu, P. F.; Luan, Y.; Dai, X. G. J. Mole. Catal. A: Chem. 2004, 221, 81. https://doi.org/10.1016/j.molcata.2004.06.018
  9. Oh, W. C.; Chen, M. L. Bull. Korean Chem. Soc. 2008, 29, 159. https://doi.org/10.5012/bkcs.2008.29.1.159
  10. Oh, W. C.; Jung, A. R.; Ko, W. B. J. Ind. Eng. Chem. 2007, 13, 1208.
  11. Yang, S.; Zhu, W.; Li, X. Catal. Commun. 2007, 8, 2059. https://doi.org/10.1016/j.catcom.2007.04.015
  12. Zhang, F. J.; Chen, M. L.; Oh, W. C. Environ. Eng. Res. 2009, 14, 32. https://doi.org/10.4491/eer.2009.14.1.032
  13. Zhang, F. J.; Chen, M. L.; Oh, W. C. Mater. Res. Soc. Korea 2008, 18, 583. https://doi.org/10.3740/MRSK.2008.18.11.583
  14. Kongkanand, A.; Kamat, P. V. ACS. Nano. 2007, 1, 13. https://doi.org/10.1021/nn700036f
  15. Choi, W.; Termin, A.; Hoffmann, M. R. J. Phys. Chem. 1994, 98, 13669. https://doi.org/10.1021/j100102a038
  16. Fox, M. A.; Dulay, M. T. Chem. Rev. 1993, 93, 341. https://doi.org/10.1021/cr00017a016
  17. Xu, A.; Gao, W. Y.; Liu, H. Q. J. Catal. 2002, 207, 151. https://doi.org/10.1006/jcat.2002.3539
  18. Jing, L. Q.; Sun, X. I.; Xin, B. F. J. Solid State Chem. 2004, 177, 3375. https://doi.org/10.1016/j.jssc.2004.05.064
  19. Shankar, M. V.; Cheralthan, K. K.; Arabindoo, B. J. Mole. Catal. 2004, 223, 195. https://doi.org/10.1016/j.molcata.2004.03.059
  20. Shankar, M. V.; Anandan, S.; Venkatachalam, N. Chemosphere 2006, 63, 1014. https://doi.org/10.1016/j.chemosphere.2005.08.041
  21. Zhang, Y. H.; Zhang, H. X.; Xu, Y. X. J. Mater. Chem. 2003, 13, 2261. https://doi.org/10.1039/b305538h
  22. Liang, C. H.; Li, F. B.; Liu, C. S. Dyes Pigments 2008, 76, 477. https://doi.org/10.1016/j.dyepig.2006.10.006
  23. Lin, J.; Yu, J. C. J. Photochem. Photobiol. A: Chem. 1998, 116, 63. https://doi.org/10.1016/S1010-6030(98)00289-5
  24. Ismail, A. A. Appl. Catal. B: Environ. 2005, 58, 115. https://doi.org/10.1016/j.apcatb.2004.11.022
  25. Inagaki, M.; Hirose, Y.; Matsunaga, T. Carbon 2003, 41, 2619. https://doi.org/10.1016/S0008-6223(03)00340-3
  26. Oh, W. C.; Chen, M. L. J. Ceram. Process Res. 2008, 9, 100.
  27. Zhang, X. W.; Zhou, M. H.; Lei, L. C. Carbon 2005, 43, 1700. https://doi.org/10.1016/j.carbon.2005.02.013
  28. Christensen, P. A.; Curtis, T. P.; Egerton, T. A. Appl. Catal. B: Environ. 2003, 41, 371. https://doi.org/10.1016/S0926-3373(02)00172-8
  29. Ugarte, U.; Chatelain, A.; De Heer, W. A. Science 1996, 274, 1897. https://doi.org/10.1126/science.274.5294.1897
  30. Ajayan, P. M.; Iijima, S. Nature 1996, 361, 333. https://doi.org/10.1038/361333a0

Cited by

  1. Effect of Pt treated fullerene/TiO2 on the photocatalytic degradation of MO under visible light vol.21, pp.21, 2011, https://doi.org/10.1039/c1jm10301f
  2. Composites and Their Photocatalytic Activity Under Visible Light vol.48, pp.3, 2011, https://doi.org/10.4191/KCERS.2011.48.3.211
  3. Comparison of the photonic effects of Mn-CNT/TiO2 composites modified by different oxidants vol.52, pp.5, 2011, https://doi.org/10.1134/S002315841105020X
  4. Lanthanide modified semiconductor photocatalysts vol.2, pp.4, 2012, https://doi.org/10.1039/c2cy00552b
  5. Supported on AC Under Visible Light Irradiation vol.22, pp.2, 2012, https://doi.org/10.3740/MRSK.2012.22.2.91
  6. /Carbon Nanotube Nanocomposites for Environmental Applications: An Overview and Recent Developments vol.22, pp.5, 2014, https://doi.org/10.1080/1536383X.2012.690458
  7. . Application for the Photocatalytic Degradation of Formic Acid vol.44, pp.12, 2015, https://doi.org/10.1246/cl.150762
  8. Modeling and Optimization of BT and DBT Photooxidation over Multiwall Carbon Nanotube-Titania Composite by Response Surface Methodology vol.2018, pp.1687-529X, 2018, https://doi.org/10.1155/2018/9716383
  9. Catalytic performance of ZnFe2O4 nanoparticles prepared from the [ZnFe2O(CH3COO)6(H2O)3]·2H2O complex under microwave irradiation vol.45, pp.2, 2019, https://doi.org/10.1007/s11164-018-3607-6
  10. Photodegradation of MB on Fe/CNT-TiO2 Composite Photocatalysts Under Visible Light vol.20, pp.5, 2010, https://doi.org/10.3740/mrsk.2010.20.5.246
  11. Sonocatalytic degradation of Rhodamine B in the presence of C60 and CdS coupled TiO2 particles vol.19, pp.1, 2010, https://doi.org/10.1016/j.ultsonch.2011.05.006
  12. Synthesis and structural characterization of magnetic cadmium sulfide-cobalt ferrite nanocomposite, and study of its activity for dyes degradation under ultrasound vol.1123, pp.None, 2016, https://doi.org/10.1016/j.molstruc.2016.06.032
  13. Ultrasound-assisted degradation of organic dyes over magnetic CoFe2O4@ZnS core-shell nanocomposite vol.37, pp.None, 2010, https://doi.org/10.1016/j.ultsonch.2017.01.019
  14. Sonocatalytic performance of magnetically separable CuS/CoFe2O4 nanohybrid for efficient degradation of organic dyes vol.44, pp.None, 2010, https://doi.org/10.1016/j.ultsonch.2018.02.051
  15. A magnetically separable plate-like cadmium titanate-copper ferrite nanocomposite with enhanced visible-light photocatalytic degradation performance for organic contaminants vol.9, pp.27, 2010, https://doi.org/10.1039/c9ra01968e
  16. Recent development and future prospects of TIO 2 photocatalysis vol.68, pp.5, 2010, https://doi.org/10.1002/jccs.202000465