Purification and Characterization of Manganese Peroxidase of the White-Rot Fungus Irpex lacteus

  • Published : 2005.12.01

Abstract

The production of manganese peroxidase (MnP) by Irpex lacteus, purified to electrophoretic homogeneity by acetone precipitation, HiPrep Q and HiPrep Sephacryl S-200 chromatography, was shown to correlate with the decolorization of textile industry wastewater. The MnP was purified 11.0-fold, with an overall yield of $24.3\%$. The molecular mass of the native enzyme, as determined by gel filtration chromatography, was about 53 kDa. The enzyme was shown to have a molecular mass of 53.2 and 38.3 kDa on SDS-PAGE and MALDI-TOF mass spectrometry, respectively, and an isoelectric point of about 3.7. The enzyme was optimally active at pH 6.0 and between 30 and $40^{\circ}C$. The enzyme efficiently catalyzed the decolorization of various artificial dyes and oxidized Mn (II) to Mn (III) in the presence of $H_2O_2$. The absorption spectrum of the enzyme exhibited maxima at 407, 500, and 640 nm. The amino acid sequence of the three tryptic peptides was analyzed by ESI Q- TOF MS/MS spectrometry, and showed low similarity to those of the extracellular peroxidases of other white-rot basidiomycetes.

Keywords

References

  1. Banci, L., I. Bertini, L., Dal Pozzo, R. Del Conte, and M. Tien.1998. Monitoring the role of oxalate in manganese peroxidase. Biochemistry 37, 9009-9015 https://doi.org/10.1021/bi972879+
  2. Beaudette, L.E., S. Davies, P.M. Fedorak, O.P. Ward, and M.A. Pickard. 1998. Comparison of biodegradation and mineralization as methods for measuring loss of selected polychlorinated biphenyl congeners in cultures of four white rot fungi. Appl. Environ. Microbiol. 64, 2020-2025
  3. Bhatt, M., M. Patel, B. Rawal, C. Novotny, H.P. Molitoris, and V. Sasek. 2000. Biological decolorization of the synthetic dye RBBR in contaminated soil. World J. Microbiol. Biotechnol.16, 195-198 https://doi.org/10.1023/A:1008937503675
  4. Capelari, M. and F. Zadrazil. 1997. Lignin degradation and in vitro digestibility of wheat straw treated with Brazilian tropical species of white rot fungi. Folia Microbiol. 42, 481-487 https://doi.org/10.1007/BF02826558
  5. Caramelo, L., M.J. Martinez, and A.T. Martinez. 1999. A search for ligninolytic peroxidases in the fungus Pleurotus eryngii involving alpha-keto-gamma-thiomethybutyric acid and lignin model dimmers. Appl. Environ. Microbiol. 65, 916-922
  6. Glenn, J.K. and M.H. Gold. 1985. Purification and characterization of an extracellular Mn (II)-dependent peroxidase from the lignin- degrading basidiomycete, Phanerochaete chrysosporium. Arch. Biochem. Biophys. 242, 329-341 https://doi.org/10.1016/0003-9861(85)90217-6
  7. Heinfling, A., M.J. Martinez, A.T. Martinez, M. Bergbauer, and U. Szewzyk. 1998. Purification and characterization of peroxidases from the dye-decolorizing fungus Bjerkandera adusta. FEMS Microbiol. Lett. 165, 43-50 https://doi.org/10.1111/j.1574-6968.1998.tb13125.x
  8. Hilden, L., G. Johansson, G. Pettersson, J. Li, P. Ljungquist, and G. Henriksson. 2000. Do the extracellular enzymes cellobiose dehydrogenase and manganese peroxidase form a pathway in lignin biodegradation? FEBS Lett. 477, 79-83 https://doi.org/10.1016/S0014-5793(00)01757-9
  9. Hofrichter, M., K. Vares, K. Scheibner, S. Galkin, J. Sipila, and A. Hatakka. 1999. Mineralization and solubilization of synthetic lignin by manganese peroxidases from Nematoloma frowardii and Phlebia radiata. J. Biotechnol. 67, 217-228 https://doi.org/10.1016/S0168-1656(98)00180-1
  10. Kasinath, A., C. Novotny, K. Svobodova, K.C. Patel, and V. Sasek. 2003. Decolorization of synthetic dyes by Irpex lacteus in liquid cultures and packed-bed bioreactor. Enzyme Microb. Technol. 32, 167-173 https://doi.org/10.1016/S0141-0229(02)00279-X
  11. Kim, H.Y. and H.G. Song. 2000. Simultaneous utilization of two different pathways in degradation of 2,4,6-trinitrotoluene by white rot fungus Irpex lacteus. J. Microbiol. 38, 250-254
  12. Kishi, K., H. Wariishi, L. Marquez, H.B. Dunford, and M.H. Gold. 1994. Mechanism of manganese peroxidase compound II reduction. Effect of organic acid chelators and pH. Biochemistry 33, 8694-8701 https://doi.org/10.1021/bi00195a010
  13. Kuan, I.-C. and M. Tien. 1993. Stimulation of Mn peroxidase activity: a possible role for oxalate in lignin biodegradation. Proc. Natl. Acad. Sci. USA 90, 1242-1246
  14. Kuan, I.-C., K.A. Johnson, and M. Tien. 1993. Kinetic analysis of manganese peroxidase. The reaction with manganese complexes. J. Biol. Chem. 268, 20064-20070
  15. Lowry, O.H., N.J. Rosebrough, A.L. Parr, and R.J. Randall. 1951. Protein measurement with Folin phenol reagent. J. Biol. Chem. 193, 265-275
  16. Mann, M. and M. Wilm. 1994. Error-tolerant identification of peptides in sequence databases by peptide sequence tags. Anal. Chem. 66, 4390-4399 https://doi.org/10.1021/ac00096a002
  17. Matsubara, M., J. Suzuki, T. Deguchi, M. Miura, and Y. Kitaoka. 1996. Characterization of manganese peroxidases from the hyperlignolytic fungus IZU-154. Appl. Environ. Microbiol. 62, 4066-4072
  18. Mester, T. and J.A. Field. 1997. Optimization of manganese peroxidase production by the white rot fungus Bjerkandera sp. strain BOS55. FEMS Microbiol. Lett. 155, 161-168 https://doi.org/10.1111/j.1574-6968.1997.tb13873.x
  19. Mester, T. and J.A. Field. 1998. Characterization of a novel manganese peroxidase-lignin peroxidase hybrid isozyme produced by Bjerkandera species strain BOS55 in the absence of manganese. J. Biol. Chem. 273, 15412-15417 https://doi.org/10.1074/jbc.273.25.15412
  20. Michel, F.C., S.B. Dass, E.A. Grulke, and C.A. Reddy. 1991. Role of manganese peroxidases and lignin peroxidases of Phanerochaete chrysosporium in the decolorization of Kraft bleach plant effluent. Appl. Environ. Microbiol. 57, 2368-2375
  21. Neuhoff, V., N. Arold, D. Taube, and W. Ehrhardt. 1988. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie brilliant blue G-250 and R-250. Electrophoresis 9, 255-262 https://doi.org/10.1002/elps.1150090603
  22. Novotny, C., B. Rawal, M. Bhatt, M. Patel, V. Sasek and H.P. Molitoris. 2001. Capacity of Irpex lacteus and Pleurotus ostreatus for decolorization of chemically different dyes. J. Biotechnol. 89, 113-122 https://doi.org/10.1016/S0168-1656(01)00321-2
  23. Novotny, C., P. Erbanova, T. Cajthaml, N. Rothschild, C. Dosoretz, and V. Sasek. 2000. Irpex lacteus, a white rot fungus applicable to water and soil bioremediation. Appl. Microbiol. Biotechnol. 54, 850-853 https://doi.org/10.1007/s002530000432
  24. Paice, M.G., I.D. Reid, R. Bourbonnais, F.S. Archibald, and L. Jurasek. 1993. Manganese peroxidase produced by Trametes versicolor during pulp bleaching, demethylates and delignifies Traft Pulp. Appl. Environ. Microbiol. 59, 260-265
  25. Palma, C., A.T. Martinez, J.M. Lema, and M.J. Martinez. 2000. Different fungal manganese-oxidizing peroxidases: a comparison between Bjerkandera sp. and Phanerochaete chrysosporium. J. Biotechnol. 77, 235-245 https://doi.org/10.1016/S0168-1656(99)00218-7
  26. Ruiz-Duenas, F.J., M.J. Martinez, and A.T. Martinez. 1999. Molecular characterization of a novel peroxidase isolated from the ligninolytic fungus Pleurotus eryngii. Mol. Microbiol. 31, 223-235 https://doi.org/10.1046/j.1365-2958.1999.01164.x
  27. Schneega$\beta$, I., M. Hofrichter, K. Scheibner, and W. Fritsche. 1997. Purification of the main manganese peroxidase isozyme MnP2 from the white-rot fungus Nematoloma frowardii b19. Appl. Microbiol. Biotechnol. 48, 602-605 https://doi.org/10.1007/s002530051102
  28. Shevchenko, A., M. Wilm, O. Vorm, and M. Mann. 1996. Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal. Chem. 68, 850-858 https://doi.org/10.1021/ac950914h
  29. Shin, K.S. 2004. The role of enzymes produced by white-rot fungus Irpex lacteus in the decolorization of the textile industry effluent. J. Microbiol. 42, 37-41
  30. Swamy, J. and J.A. Ramsay. 1999. Effects of $Mn_{2}^{+}$ and $NH_{4}^{+}$concentrations on laccase and manganese peroxidase production and Amaranth decoloration by Trametes versicolor. Appl. Microbiol. Biotechnol. 51, 391-396 https://doi.org/10.1007/s002530051408
  31. Tien, M. and T.K. Kirk. 1984. Lignin-degrading enzyme from Phanerochaete chrysosporium: purification, characterization and catalytic properties of a unique $H_{2}O_{2}$ requiring oxygenase. Proc. Natl. Acad. Sci. USA 81, 2280-2284
  32. Timofeevski, S.L. and S.D. Aust. 1997. Effect of $Mn^{2+}$ and oxalate on the catalytic activity of manganese peroxidase. Biochem. Biophys. Res. Commun. 239, 645-649 https://doi.org/10.1006/bbrc.1997.7453
  33. Van-Aken, B., L.M. Godefroid, C.M. Peres, H. Naveau, and S.N. Agathos. 1999. Manganese-dependent peroxidase of the whiterot basidiomycete Phlebia radiata. J. Biotechnol. 68, 159-169 https://doi.org/10.1016/S0168-1656(98)00194-1
  34. Wang, Y., R. Vazquez-Duhalt, and M.A. Pickard. 2002. Purification, characterization, and chemical modification of manganese peroxidase from Bjerkandera adusta UAMH 8258. Curr. Microbiol. 45, 77-87 https://doi.org/10.1007/s00284-001-0081-x
  35. Wariishi, H., H.B. Dunford, I.D. MacDonald, and M.H. Gold. 1989. Manganese peroxidase from the lignin-degrading basidiomycete Phanerochaete chrysosporium. J. Biol. Chem. 264, 3335-3340
  36. Wariishi, H., K. Valli, and M.H. Gold. 1992. Manganese (II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. J. Biol. Chem. 267, 23688-23695
  37. Watanabe, T., S. Katayama, M. Enoki, Y. Honda, and M. Kuwahara. 2000. Formation of acyl radical in lipid peroxidation of linoleic acid by manganese-dependent peroxidase from Cerioporipsis subvermispora and Bjerkandera adusta. Eur. J. Biochem. 267, 4222-4231 https://doi.org/10.1046/j.1432-1033.2000.01469.x
  38. Wolfenden, B.S. and R.L. Willson. 1982. Radical-cations as reference chromogens in kinetic studies of one-electron transfer reactions. J. Chem. Soc. Perkin. Trans. II, 805-812
  39. Zeigenhagen, D. and M. Hofrichter. 1998. Degradation of humic acids by manganese peroxidase from the white-rot fungus Clitocybula dusenii. J. Basic Microbiol. 38, 289-299 https://doi.org/10.1002/(SICI)1521-4028(199809)38:4<289::AID-JOBM289>3.0.CO;2-H