DOI QR코드

DOI QR Code

Microwave-assisted Fenton degradation of methylene blue

마이크로웨이브를 이용한 메틸렌 블루의 펜톤산화

  • Kim, Shin-Young (Korea Testing Laboratory) ;
  • Ahn, Johng-Hwa (Department of Environmental Engineering, College of Engineering, Kangwon National University)
  • Received : 2017.04.20
  • Accepted : 2017.08.21
  • Published : 2017.08.31

Abstract

This work experimentally determined the effect of combining of microwave irradiation and the Fenton process on decolorization of methylene blue ($C_{16}H_{18}N_3SCl$, MB). As [$H_2O_2$] increased from 2.65 to 4.41 mM, the decolorization of MB increased from 22.7 to 99.1%. As [$Fe^{2+}$] increased from 0.07 to 0.18 mM, the decolorization of MB increased from 24.0 to 98.5%. MB removal efficiencies were ${\geq}95%$ at $[H_2O_2]{\geq}3.5mM$ and $3.5{\leq}[H_2O_2]/[Fe^{2+}]{\leq}17.3$, but $[H_2O_2]/[Fe^{2+}]{\geq}20$ caused a decrease in MB removal. A two-stage kinetic model matched the experimental data well.

Keywords

References

  1. Etaiw, S.E.H., Saleh, D.I., 2014, The organotin coordination polymer [$(n-Bu_3Sn)_4Fe(CN)_6H_2O$] as effective catalyst towards the oxidative degradation of methyleneblue, Spectrochim. Acta A, 117 54-60. https://doi.org/10.1016/j.saa.2013.07.090
  2. Liu, S.-T., Huang, J., Ye, Y., Zhang, A.-B., Pan, L., Chen, X.-G., 2013, Microwave enhanced Fenton process for the removal of methylene blue from aqueous solution, Chem. Eng. J., 215-216 586-590. https://doi.org/10.1016/j.cej.2012.11.003
  3. Lucas, M.S., Peres, J.A., 2009, Removal of COD from olive mill wastewater by Fenton's reagent: Kinetic study, J. Hazard. Mater., 168 1253-1259. https://doi.org/10.1016/j.jhazmat.2009.03.002
  4. Wang, N., Zheng, T., Jiang, J., Lung, W.-S., Miao, X., Wang, P., 2014, Pilot-scale treatment of p-Nitrophenol wastewater by microwave-enhanced Fenton oxidation process: Effects of system parameters and kinetics study, Chem. Eng. J., 239 351-359. https://doi.org/10.1016/j.cej.2013.11.038
  5. Deng, Y., Englehardt, J.D., 2006, Treatment of landfill leachate by the Fenton process, Water Res., 40 3683-3694. https://doi.org/10.1016/j.watres.2006.08.009
  6. Homem, V., Alves, A., Santos, L., 2013, Microwave-assisted Fenton's oxidation of amoxicillin, Chem. Eng. J., 220 35-44. https://doi.org/10.1016/j.cej.2013.01.047
  7. Yang, Y., Wang, P., Shi, S., Liu, Y., 2009, Microwave enhanced Fenton-like process for the treatment of high concentration pharmaceutical wastewater, J. Hazard. Mater., 168 238-245. https://doi.org/10.1016/j.jhazmat.2009.02.038
  8. Liang, X., Zhong, Y., Zhu, S., Ma, L., Yuan, P., Zhu, J., He, H., Jiang, Z., 2012, The contribution of vanadium and titanium on improving methylene blue decolorization through heterogeneous UV-Fenton reaction catalyzed by their co-doped magnetite, J. Hazard. Mater., 199-200 247-254. https://doi.org/10.1016/j.jhazmat.2011.11.007
  9. Ghauch, A., Tuqan, A.M., Kibbi, N., Geryes, S., 2012, Methylene blue discoloration by heated persulfate in aqueous solution, Chem. Eng. J., 213 259-271. https://doi.org/10.1016/j.cej.2012.09.122
  10. Doumic, L.I., Haure, P.M., Cassanello, M.C., Ayude, M.A., 2013, Mineralization and efficiency in the homogeneous Fenton Orange G oxidation, Appl. Catal. B-Environ., 142-143 214-221. https://doi.org/10.1016/j.apcatb.2013.04.054
  11. Babuponnusami, A., Muthukumar, K., 2014, A review on Fenton and improvements to the Fenton process for wastewater treatment, J. Environ. Chem. Eng., 2:1 557-572. https://doi.org/10.1016/j.jece.2013.10.011
  12. Hsueh, C.L., Huang, Y.H., Wang, C.C., Chen, C.Y., 2005, Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system, Chemosphere, 158 1409-1414.
  13. Neyens, E., Baeyens, J., 2003, A review of thermal sludge pre-treatment processes to improve dewaterability, J. Hazard. Mater., 98:1-3 51-67. https://doi.org/10.1016/S0304-3894(02)00320-5
  14. Santos, M.S.F., Alves, A., Madeira, L.M., 2011, Paraquat removal from water by oxidation with Fenton's reagent, Chem. Eng. J., 175 279-290. https://doi.org/10.1016/j.cej.2011.09.106
  15. Remya, N., Lin, J.-G., 2011, Current status of microwave application in wastewater treatment-A review, Chem. Eng. J., 166:3 797-813. https://doi.org/10.1016/j.cej.2010.11.100
  16. Gulkaya, I., Surucu, G.A., Dilek, F.B., 2006, Importance of $H_2O_2/Fe^{2+}$ratio in Fenton'streatmentofacarpetdyeingwastewater, J. Hazard. Mater., 136 763-769. https://doi.org/10.1016/j.jhazmat.2006.01.006
  17. Emami, F., Tehrani-Bagha, A.R., Gharanjig, K., Menger, F.M., 2010, Kinetic study of the factors controlling Fenton-promoted destruction of a non-biodegradable dye, Desalination, 257 124-128. https://doi.org/10.1016/j.desal.2010.02.035
  18. Papadopoulos, A.E., Fatta, D., Loizidou, M., 2007, Development and optimization of dark Fenton oxidation for the treatment of textile wastewaters with high organic load, J. Hazard. Mater., 146:3 558-563. https://doi.org/10.1016/j.jhazmat.2007.04.083
  19. Li, R., Yang, C., Chen, H., Zeng, G., Yu, G., Guo, J., 2009, Removal of triazophos pesticide from wastewater with Fenton reagent, J. Hazard. Mater., 167 1028-1032. https://doi.org/10.1016/j.jhazmat.2009.01.090
  20. Wu, Y., Zhou, S., Qin, F., Peng, H., Lai, Y., Lin, Y., 2010, Removal of humic substances from landfill leachate by Fenton oxidation and coagulation, Process Saf. Environ., 88 276-284. https://doi.org/10.1016/j.psep.2010.03.002
  21. Bautista, P., Mohedano, A.F., Gilarranz, M.A., Casas, J.A., Rodriguez, J.J., 2007, Application of Fenton oxidation to cosmetic wastewaters treatment, J. Hazard. Mater., 143 128-134. https://doi.org/10.1016/j.jhazmat.2006.09.004
  22. Lin, S.H., Lo, C.C., 1997, Fenton process for treatment of desizing wastewater, Water Res., 31 2050-2056. https://doi.org/10.1016/S0043-1354(97)00024-9
  23. Chan, K.H., Chu, W., 2003, The system design of atrazine oxidation by catalytic oxidation process through a kinetic approach Water Res., 37 3997-4003. https://doi.org/10.1016/S0043-1354(03)00316-6
  24. Ahn, J.-H., Forster, C.F., 2000, Kinetic analyses of the operation of mesophilic and thermophilic anaerobic filters treating a simulated starch wastewater, Process Biochem., 36:1-2 19-23. https://doi.org/10.1016/S0032-9592(00)00166-7