Browse > Article
http://dx.doi.org/10.4014/jmb.1211.11077

Decolorization of Dyehouse Effluent and Biodegradation of Congo Red by Bacillus thuringiensis RUN1  

Olukanni, O.D. (Department of Chemical Sciences, Redeemer's University)
Osuntoki, A.A. (Department of Biochemistry, University of Lagos)
Awotula, A.O. (Department of Biochemistry, University of Lagos)
Kalyani, D.C. (Department of Biochemistry, Shivaji University)
Gbenle, G.O. (Department of Biochemistry, University of Lagos)
Govindwar, S.P. (Department of Biochemistry, Shivaji University)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.6, 2013 , pp. 843-849 More about this Journal
Abstract
A dye-decolorizing bacterium was isolated from a soil sample and identified as Bacillus thuringiensis using 16S rRNA sequencing. The bacterium was able to decolorize three different textile dyes, namely, Reactive blue 13, Reactive red 58, and Reactive yellow 42, and a real dyehouse effluent up to 80-95% within 6 h. Some non-textile industrially important dyes were also decolorized to different extents. Fourier transform infrared spectroscopy and gas chromatography-mass spectrometer analysis of the ethyl acetate extract of Congo red dye and its metabolites showed that the bacterium could degrade it by the asymmetric cleavage of the azo bonds to yield sodium (4-amino-3-diazenylnaphthalene-1-sulfonate) and phenylbenzene. Sodium (4-amino-3-diazenylnaphthalene-1-sulfonate) was further oxidized by the ortho-cleavage pathway to yield 2-(1-amino-2-diazenyl-2-formylvinyl) benzoic acid. There was induction of the activities of laccase and azoreductase during the decolorization of Congo red, which suggests their probable role in the biodegradation. B. thuringiensis was found to be versatile and could be used for industrial effluent biodegradation.
Keywords
Decolorization; dyehouse effluent; Congo red; UV-visible analysis; GC-MS analysis;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Sponza, D. T. 2002. Necessity of toxicity assessment in Turkish industrial discharges (examples from metal and textile industry effluents). Environ. Monit. Assess. 73: 41-66.   DOI   ScienceOn
2 Wesenberg, D., I. Kyriakides, and S. N. Agathos. 2003. Whiterot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol. Adv. 22: 161-187.   DOI   ScienceOn
3 Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software (version 4.0). Mol. Biol. Evol. 24: 596-1599.
4 Van der Zee, F. 2002. Anaerobic azo dye reduction. Ph.D. Thesis. Wageningen University, The Netherlands.
5 Verma, P. and D. Madamwar. 2003. Decolorization of synthetic dyes by a newly isolated strain of Serratia marcescens. World J. Microbiol. Biotechnol. 19: 615-618.   DOI   ScienceOn
6 Zhang, X. and W. Flurkey. 1997. Phenol oxidases in Portabella mushrooms. J. Food Sci. 62: 97-100.   DOI   ScienceOn
7 Ali, N., A. Hameed, and S. Ahmed. 2008. Physiochemical characterization and bioremediation perspective of textile effluent, dyes and metals by indigenous bacteria. J. Hazard. Mater. 163: 735-743.
8 Do, T., J. Shen, G. Carwood, and R. Jenkins. 2002. Biotreatment of textile effluent using Pseudomonas spp. imobilised on polymer support, pp 35-45. In I. R. Hardin, D. E. Akin, and S. J. Wilson (eds.). Advanced Biotechnology for Textile Processes. The University of Georgia.
9 D'Souza, D. T., R. Tiwari, A. K. Sah, and C. Raghukumar. 2007. Enhanced production of laccase by a marine fungus during treatment of colored effluents and synthetic dyes. Enzyme Microb. Technol. 38: 504-511.
10 Jadhav, U. U., V. V. Dawkar, D. P. Tamboli, and S. P. Govindwar. 2009. Purification and characterization of veratryl alcohol oxidase from Comamonas sp. UVS and its role in decolorization of textile dyes. Biotechnol. Bioprocess Eng. 14: 369-376.   DOI   ScienceOn
11 Glare, T. R. and M. O'Callaghan. 2000. Bacillus thuringiensis: Biology, Ecology and Safety. John Wiley & Sons, New York.
12 Goncalves, I. M. C., A. Gomes, R. Bras, M. I. A. Ferra, M. T. P. Amorin, and R. S. Porter. 2000. Biological treatment of effluent containing textile dyes. J. Soc. Dyers Colour. 116: 393-397.
13 Have, R. T., S. Hartmans, P. J. M. Teunissen, and Y. A. Field. 1997. Purification and characterisation of two peroxidase isozymes produced by Bjerkandera sp. strain BOS55. FEBS Lett. 422: 391-394.
14 Jalandoni-Buan A. C., A. L. A. Decena-Soliven, E. P. Cao, V. L. Barraquio, and W. L. Barraquio. 2010. Characterization and identification of Congo red decolorizing bacteria from monocultures and consortia. Philipp. J. Sci. 139: 71-78.
15 Kalyani, D. C., P. S. Patil, J. P. Jadhav, and S. P. Govindwar. 2008. Biodegradation of reactive textile dye Red BLI by an isolated bacterium sp. SUK1. Bioresour. Technol. 99: 4635- 4641.   DOI   ScienceOn
16 Kalme, S. D., G. K. Parshetti, S. U. Jadhav, and S. P. Govindwar. 2006. Biodegradation of benzidine based dye Direct blue-6 by Pseudomonas desmolyticum NCIM 2112. Bioresour. Technol. 98: 1405-1410.
17 Maier, J., A. Kandelbauer, A. Erlacher, A. Cavaco-Paulo, and G. M. Gubits. 2004. A new alkali-thermostable azoreductase from Bacillus sp. strain SF. Appl. Environ. Microbiol. 70: 837-844.   DOI
18 Olukanni, O. D., A. A. Osuntoki, and G. O. Gbenle. 2009. Decolorization of azo dyes by a strain of Micrococcus isolated from a refuse dump soil. Biotechnology 8: 42-48.
19 Marzullo, L., R. Cannio, P. Giardina, M. T. Santini, and G. Sannia. 1995. Veratryl alcohol oxidase from Pleurotus ostreatus participates in lignin biodegradation and prevents polymerization of laccase-oxidized substrates. J. Biol. Chem. 270: 3823-3827.   DOI   ScienceOn
20 Nagai, M., T. Sato, H. Watanabe, K. Saito, M. Kawata, and H. Enei. 2002. Purification and characterization of an extracellular laccase from the edible mushroom Lentinula edodes, and decolorization of chemically different dyes. Appl. Microbiol. Biotechnol. 60: 327-335.   DOI   ScienceOn
21 Olukanni, O. D., A. A. Osuntoki, and G. O. Gbenle. 2006. Textile effluent biodegradation potentials of textile effluentadapted and non-adapted bacteria. Afr. J. Biotechnol. 5: 1980- 1984.
22 Olukanni, O. D., A. A. Osuntoki, D. C. Kalyani, G. O. Gbenle, and S. P. Govindwar. 2010. Decolorization and biodegradation of Reactive Blue 13 by Proteus mirabilis LAG. J. Hazard. Mater. 184: 290-298.   DOI   ScienceOn
23 Raj, A., R. Chandra, M. M. K. Reddy, H. J. Purohit, and A. Kapley. 2007. Biodegradation of kraft lignin by a newly isolated bacterial strain, Aneurinibacillus aneurinilyticus from the sludge of a pulp paper mill. World J. Microbiol. Biotechnol. 23: 793-799.   DOI
24 Scherpenisse, P. and A. A. Bergwerff. 2004. Determination of residues of malachite green in finfish by liquid chromatography tandem mass spectrometry Anal. Chim. Acta 529: 173-177