KSII Transactions on Internet and Information Systems (TIIS)
/
v.18
no.5
/
pp.1412-1430
/
2024
The soft cancellation list (SCANL) decoding algorithm for polar codes runs L soft cancellation (SCAN) decoders with different decoding factor graphs. Although it can achieve better decoding performance than SCAN algorithm, it has high latency. In this paper, a fast simplified SCANL (Fast-SSCANL) algorithm that runs L independent Fast-SSCAN decoders is proposed. In Fast-SSCANL decoder, special nodes in each factor graph is identified, and corresponding low-latency decoding approaches for each special node is propose first. Then, syndrome check aided Fast-SSCANL (SC-Fast-SSCANL) algorithm is further put forward. The ordinary nodes satisfied the syndrome check will execute hard decision directly without traversing the factor graph, thereby reducing the decoding latency further. Simulation results show that Fast-SSCANL and SC-Fast-SSCANL algorithms can achieve the same BER performance as the SCANL algorithm with lower latency. Fast-SSCANL algorithm can reduce latency by more than 83% compared with SCANL, and SC-Fast-SSCANL algorithm can reduce more than 85% latency compared with SCANL regardless of code length and code rate.
Kim, Yong-Hwan;Kim, Dong-Hyeok;Yi, Joo-Young;Kim, Je-Woo
IEIE Transactions on Smart Processing and Computing
/
v.3
no.1
/
pp.1-9
/
2014
This paper proposes a low-latency Sample Adaptive Offset filter (SAO) architecture and its Single Instruction Multiple Data (SIMD) optimization scheme to achieve fast High Efficiency Video Coding (HEVC) decoding in a multi-core environment. According to the HEVC standard and its Test Model (HM), SAO operation is performed only at the picture level. Most realtime decoders, however, execute their sub-modules on a Coding Tree Unit (CTU) basis to reduce the latency and memory bandwidth. The proposed low-latency SAO architecture has the following advantages over picture-based SAO: 1) significantly less memory requirements, and 2) low-latency property enabling efficient pipelined multi-core decoding. In addition, SIMD optimization of SAO filtering can reduce the SAO filtering time significantly. The simulation results showed that the proposed low-latency SAO architecture with significantly less memory usage, produces a similar decoding time as a picture-based SAO in single-core decoding. Furthermore, the SIMD optimization scheme reduces the SAO filtering time by approximately 509% and increases the total decoding speed by approximately 7% compared to the existing look-up table approach of HM.
In this paper, we propose and present implementation results of a high-speed turbo decoding algorithm. The latency caused by (de)interleaving and iterative decoding in a conventional maximum a posteriori turbo decoder can be dramatically reduced with the proposed design. The source of the latency reduction is from the combination of the radix-4, center to top, parallel decoding, and early-stop algorithms. This reduced latency enables the use of the turbo decoder as a forward error correction scheme in real-time wireless communication services. The proposed scheme results in a slight degradation in bit error rate performance for large block sizes because the effective interleaver size in a radix-4 implementation is reduced to half, relative to the conventional method. To prove the latency reduction, we implemented the proposed scheme on a field-programmable gate array and compared its decoding speed with that of a conventional decoder. The results show an improvement of at least five fold for a single iteration of turbo decoding.
본 논문에서는 traceback 동작 없이 decoding이 가능한 Modified Register Exchange 방식을 이용하여 이를 block decoding에 적용하는 비터비 decoding 방식을 제안하였다. Modified Register Exchange 방식을 block decoding에 적용함으로써 decision bit 들을 결정하기 위해 필요한 동작 사이클을 줄였고, block decoding을 사용하는 기존의 비터비 디코더보다 더 적은 latency 가지게 되었다. 뿐만 아니라, 메모리를 더 효율적으로 사용할 수 있으면서 하드웨어의 구현에 있어서도 복잡도가 더 감소하게 된다. 제안된 방식은 같은 하드웨어 복잡도로도 메모리의 감소 또는 latency 의 감소에 중점을 둔 설계가 가능하다.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.17
no.4
/
pp.1296-1309
/
2023
In this paper, based on the soft cancellation (SCAN) bit-flipping (SCAN-BF) algorithm, a generalized SCAN bit-flipping (GSCAN-BF-Ω) decoding algorithm is carried out, where Ω represents the number of bits flipped or corrected at the same time. GSCAN-BF-Ω algorithm corrects the prior information of the code bits and flips the prior information of the unreliable information bits simultaneously to improve the block error rate (BLER) performance. Then, a joint threshold scheme for the GSCAN-BF-2 decoding algorithm is proposed to reduce the average decoding complexity by considering both the bit channel quality and the reliability of the coded bits. Simulation results show that the GSCAN-BF-Ω decoding algorithm reduces the average decoding latency while getting performance gains compared to the common multiple SCAN bit-flipping decoding algorithm. And the GSCAN-BF-2 decoding algorithm with the joint threshold reduces the average decoding latency further by approximately 50% with only a slight performance loss compared to the GSCAN-BF-2 decoding algorithm.
Successive cancellation (SC) decoding that is one of the decoding algorithms for polar codes has long decoding latency and low throughput because of the nature of successive decoding. To reduce the latency and increase the throughput, various decoding structures for polar codes are presented. In this paper, we compare the previous decoding structures and analyze them by dividing into two types, pruning and multi-path decoders. Decoders for applying pruning are representative of SSC (simplified SC), Fast-SSC and redundant-LLR structures, and decoders with multi-path are representative of 2-bit SC and redundant-LLR structures. All the previous structures are compared in terms decoding latency and hardware area, and according to the comparison, the syndrome check based decoder has the lowest latency and redundant-LLR decoder has the highest hardware efficiency.
Due to its superior error correcting performance with affordable hardware complexity, the Polar code becomes one of the most important error correction codes (ECCs) and now intensively examined to check its applicability in various fields. However, Successive Cancellation (SC) decoding that brings the advanced Successive Cancellation List (SCL) decoding suffers from the long latency due to the nature of serial processing limiting the practical implementation. To mitigate this problem, many decoding architectures, mainly divided into pruning and parallel decoding, are presented in previous manuscripts. In this paper, we compare the recent SC decoding architectures and analyze them using a tree structure.
The Journal of Korean Institute of Communications and Information Sciences
/
v.30
no.6C
/
pp.450-456
/
2005
In this paper, we propose a high-speed turbo decoding algorithm and present results of its implementation. The latency caused by (de)interleaving and iterative decoding in conventional MAP turbo decoder can be dramatically reduced with the proposed scheme. The main cause of the time reduction is to use radix-4, center to top, and parallel decoding algorithm. The reduced latency makes it possible to use turbo decoder as a FEC scheme in the real-time wireless communication services. However the proposed scheme costs slight degradation in BER performance because the effective interleaver size in radix-4 is reduced to an half of that in conventional method. To ensure the time reduction, we implemented the proposed scheme on a FPGA chip and compared with conventional one in terms of decoding speed. The decoding speed of the proposed scheme is faster than conventional one at least by 5 times for a single iteration of turbo decoding.
Journal of electromagnetic engineering and science
/
v.6
no.3
/
pp.147-154
/
2006
In this paper, we propose and present implementation results of a high-speed turbo decoding algorithm. The latency caused by (de) interleaving and iterative decoding in a conventional maximum a posteriori(MAP) turbo decoder can be dramatically reduced with the proposed design. The source of the latency reduction is come from the combination of the radix-4, dual-path processing, parallel decoding, and rearly-stop algorithms. This reduced latency enables the use of the turbo decoder as a forward error correction scheme in real-time wireless communication services. The proposed scheme results in a slight degradation in bit-error rate(BER) performance for large block sizes because the effective interleaver size in a radix-4 implementation is reduced to half, relative to the conventional method. Fixed on the parameters of N=212, iteration=3, 8-states, 3 iterations, and QPSK modulation scheme, we designed the adaptive high-speed turbo decoder using the Xilinx chip (VIRTEX2P (XC2VP30-5FG676)) with the speed of 17.78 Mb/s. From the results, we confirmed that the decoding speed of the proposed decoder is faster than conventional algorithms by 8 times.
For the initial state of NAND flash memories, error-free and single-error cases are dominant due to a good channel environment on memory cells. It is important to deal with such cases, which affects the overall system performance. However, the conventional schemes for polar codes equally decode the codes even for the error-free and single-error cases since they cannot classify and decode separately. In this paper, a new pre-processing scheme for polar codes is proposed so as to improve the overall decoding latency by decoding the frequent error-free and single-error cases. Before the ordinary decoding process, the proposed scheme first decodes the frequent error-free and single-error cases. According to the experimental results, the proposed pre-processing scheme decreases the average decoding latency by 64% compared to the conventional scheme for (1024, 512) polar codes.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.