DOI QR코드

DOI QR Code

Comparison on Recent Decoding Methods for Polar Codes based on Successive-Cancellation Decoding

연속 제거 복호기반의 최신 극 부호 복호기법 비교

  • Choi, Soyeon (Dept. of Electronics Engineering, Chungnam National University) ;
  • Yoo, Hoyoung (Dept. of Electronics Engineering, Chungnam National University)
  • Received : 2016.06.01
  • Accepted : 2020.06.24
  • Published : 2020.06.30

Abstract

Successive cancellation (SC) decoding that is one of the decoding algorithms for polar codes has long decoding latency and low throughput because of the nature of successive decoding. To reduce the latency and increase the throughput, various decoding structures for polar codes are presented. In this paper, we compare the previous decoding structures and analyze them by dividing into two types, pruning and multi-path decoders. Decoders for applying pruning are representative of SSC (simplified SC), Fast-SSC and redundant-LLR structures, and decoders with multi-path are representative of 2-bit SC and redundant-LLR structures. All the previous structures are compared in terms decoding latency and hardware area, and according to the comparison, the syndrome check based decoder has the lowest latency and redundant-LLR decoder has the highest hardware efficiency.

Polar code의 복호 기법 중에 하나인 연속 제거 (successive cancellation; SC) 복호는 순차적으로 복호를 수행해야하는 특성으로 인해 지연시간이 길고, 복호를 위해 필요한 하드웨어 면적이 크다. 이를 극복하기 위하여 다수의 연구들이 진행되었으며, 본 논문에서는 연속 제거 복호를 기반으로 한 복호 기법을 가지치기 (pruning) 복호 기법들과 다중-경로 (multi-path) 복호기법들로 나누어 정리하였다. 가지치기 복호기법에는 SSC (simplified SC), fast-SSC, 신드롬 판단 기반 복호 등이 있으며, 다중-경로 복호 기법에는 2-비트 연속 제거 복호와 redundant-LLR 표현 기반의 복호가 있다. 본 논문에서는 SSC, fast-SSC, 신드롬 판단, 2-비트 연속 제거, 그리고 redundant-LLR 표현 기반의 복호 기법들을 지연시간과 하드웨어 면적 측면에서 비교했으며, 비교 결과 신드롬 판단 기반 복호기법이 지연시간이 가장 짧고, redundant-LLR 표현 기반의 복호가 하드웨어 면적이 가장 작은 복호 기법이다.

Keywords

References

  1. E. Arikan, "Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels," IEEE Transactions on Information Theory, vol.55, no.7, pp.3051-3073, 2009. DOI: 10.1109/TIT.2009.2021379
  2. C. Leroux, I. Tal, A. Vardy, and W. J. Gross, "Hardware architectures for successive cancellation decoding of polar codes," 2011 IEEE International Conefernce on Acoustics, Speech and Signal Processing (ICASSP), pp.1665-1668, 2011. DOI: 10.1109/ICASSP.2011.5946819
  3. C. Leroux, A. J. Raymond, G. Sarkis and W. J. Gross, "A Semi-Parallel Successive- Cancellation Decoder for Polar Codes," IEEE Transactions on Signal Processing, vol.61, no.2, pp.289-299, 2013. DOI: 10.1109/TSP.2012.2223693.
  4. I. Tal and A. Vardy, "List Decoding of Polar Codes," IEEE Transactions on Information Theory, vol.61, no.5, pp.2213-2226, 2015. DOI: 10.1109/TIT.2015.2410251.
  5. B. Li, H. Shen and D. Tse, "An Adaptive Successive Cancellation List Decoder for Polar Codes with Cyclic Redundancy Check," IEEE Communications Letters, vol.16, no.12, pp.2044-2047, 2012. DOI: 10.1109/LCOMM.2012.111612.121898.
  6. O. Afisiadis, A. Balatsoukas-Stimming and A. Burg, "A low-complexity improved successive cancellation decoder for polar codes," 2014 48th Asilomar Conference on Signals, Systems and Computers, pp.2116-2120, 2014. DOI: 10.1109/ACSSC.2014.7094848
  7. L. Chandesris, V. Savin and D. Declercq, "An Improved SCFlip Decoder for Polar Codes," 2016 IEEE Global Communications Conference (GLOBECOM), pp.1-6, 2016. DOI: 10.1109/GLOCOM.2016.7841594
  8. 3GPP, "5G: Study on new radio (NR) access technology," 3GPP TS 38.212 v.15.0.0, 2017.
  9. A. Alamdar-Yazdi and F. R. Kschischang, "A Simplified Successive-Cancellation Decoder for Polar Codes," IEEE Communications Letters, vol.15, no.12, pp.1378-1380, 2011. DOI: 10.1109/LCOMM.2011.101811.111480.
  10. C. Zhang and K. K. Parhi, "Latency Analysis and Architecture Design of Simplified SC Polar Decoders," IEEE Transactions on Circuits and Systems II: Express Briefs, vol.61, no.2, pp.115-119, 2014. DOI: 10.1109/TCSII.2013.2291065.
  11. G. Sarkis, P. Giard, A. Vardy, C. Thibeault and W. J. Gross, "Fast Polar Decoders: Algorithm and Implementation," IEEE Journal on Selected Areas in Communications, vol.32, no.5, pp.946-957, 2014. DOI: 10.1109/JSAC.2014.140514.
  12. G. Sarkis and W. J. Gross, "Increasing the Throughput of Polar Decoders," IEEE Communications Letters, vol.17, no.4, pp.725-728, 2013. DOI: 10.1109/LCOMM.2013.021213.121633.
  13. H. Yoo and I. Park, "Efficient Pruning for Successive-Cancellation Decoding of Polar Codes," IEEE Communications Letters, vol.20, no.12, pp.2362-2365, 2016. DOI: 10.1109/LCOMM.2016.2607167.
  14. B. Yuan and K. K. Parhi, "Low-Latency Successive-Cancellation Polar Decoder Architectures Using 2-Bit Decoding," IEEE Transactions on Circuits and Systems I: Regular Papers, vol.61, no.4, pp.1241-1254, 2014. DOI: 10.1109/TCSI.2013.2283779.
  15. H. Yoon and T. Kim, "Efficient Successive-Cancellation Polar Decoder Based on Redundant LLR Representation," IEEE Transactions on Circuits and Systems II: Express Briefs, vol.65, no.12, pp.1944-1948, 2018. DOI: 10.1109/TCSII.2018.2811378.