• Title/Summary/Keyword: Debris flow

Search Result 439, Processing Time 0.024 seconds

Potential of River Bottom and Bank Erosion for River Restoration after Dam Slit in the Mountain Stream

  • Kang, Ji-Hyun;So, Kazama
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.46-46
    • /
    • 2011
  • Severe sediment erosion during floods occur disaster and economic losses, but general sediment erosion is basic mechanism to move sediment from upstream to downstream river. In addition, it is important process to change river form. Check dam, which is constructed in mountain stream, play a vital role such as control of sudden debris flow, but it has negative aspects to river ecosystem. Now a day, check dam of open type is an alternative plan to recover river biological diversity and ecosystem through sediment transport while maintaining the function of disaster control. The purpose of this paper is to verify sediment erosion progress of river bottom and bank as first step for river restoration after dam slit by cross-sectional shear stress and critical shear stress. Study area is upstream reach of slit check dam in mountain stream, named Wasada, in Japan. The check dam was slit with two passages in August, 2010. The transects were surveyed for four upstream cross-sections, 7.4 m, 34 m, 86 m, and 150 m distance from dam in October 2010. Sediment size was surveyed at river bottom and bank. Sediment of cobble size was found at the wetted bottom, and small size particles of sand to medium gravel composed river bank. Discharge was $2.5\;m^3/s$ and bottom slope was 0.027 m/m. Excess shear stress (${\tau}_{ex}$) was calculated for hydraulic erosion by subtracting the values of critical shear stress (${\tau}_{c}$) from the value of shear stress (${\tau}$) at river bottom and bank (${\tau}_{ex}=\tau-{\tau}_c$). Shear stress of river bottom (${\tau}_{bottom}$) was calculated using the cross-sectional shear stress, and bank shear stress (${\tau}_{bank}$) was calculated from the method of Flintham and Carling (1988). $${\tau}_{bank}={\tau}^*SF_{bank}((B+P_{bed})/(2^*P_{bank}))$$ where $SF_{bank}=1.77(P_{bed}/p_{bank}+1.5)^{-1.4}$, B is the water surface width, $P_{bed}$ and $P_{bank}$ are wetted parameter of the bed and bank. Estimated values for ${\tau}_{bottom}$ for a flow of $2.5\;m^3/s$ were lower as 25.0 (7.5 m cross-section), 25.7 (34 m), 21.3 (86 m) and 19.8 (150 m), in N/$m^2$, than critical shear stress (${\tau}_c=62.1\;N/m^2$) with cobble of 64 mm. The values were insufficient to erode cobble sediment. In contrast, even if the values of ${\tau}_{bank}$ were lower than the values for ${\tau}_{bottom}$ as 18.7 (7.5 m), 19.3 (34 m), 16.1 (86 m) and 14.7 (150 m), in N/$m^2$, excess shear stresses were calculated at the three cross-sections of 7.5 m, 34 m, and 86 m distances compare with ${\tau}_c$ is 15.5 N/$m^2$ of 16mm gravel. Bank shear stresses were sufficient for erosion of the medium gravel to sand. Therefore there is potential to erode lateral bank than downward erosion in a flow of $2.5\;m^3/s$. Undercutting of the wetted bank can causes bank scour or collapse, therefore this channel has potential to become wider at the same time. This research is about a potential of sediment erosion, and the result could not verify with real data. Therefore it need next step for verification. In addition an erosion mechanism for river restoration is not simple because discharge distribution is variable by snow-melting or rainy season, and a function for disaster control will recover by big precipitation event. Therefore it needs to consider the relationship between continuous discharge change and sediment erosion.

  • PDF

Development of Landslide-Risk Prediction Model thorough Database Construction (데이터베이스 구축을 통한 산사태 위험도 예측식 개발)

  • Lee, Seung-Woo;Kim, Gi-Hong;Yune, Chan-Young;Ryu, Han-Joong;Hong, Seong-Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.4
    • /
    • pp.23-33
    • /
    • 2012
  • Recently, landslide disasters caused by severe rain storms and typhoons have been frequently reported. Due to the geomorphologic characteristics of Korea, considerable portion of urban area and infrastructures such as road and railway have been constructed near mountains. These infrastructures may encounter the risk of landslide and debris flow. It is important to evaluate the highly risky locations of landslide and to prepare measures for the protection of landslide in the process of construction planning. In this study, a landslide-risk prediction equation is proposed based on the statistical analysis of 423 landslide data set obtained from field surveys, disaster reports on national road, and digital maps of landslide area. Each dataset includes geomorphologic characteristics, soil properties, rainfall information, forest properties and hazard history. The comparison between the result of proposed equation and actual occurrence of landslide shows 92 percent in the accuracy of classification. Since the input for the equation can be provided within short period and low cost, and the results of equation can be easily incorporated with hazard map, the proposed equation can be effectively utilized in the analysis of landslide-risk for large mountainous area.

Chronological Study on the Deposits by Indicators of Woody Plants (수목지표(樹木指標)에 의한 하상퇴적지(河床堆積地)의 연대학적(年代學的) 연구(硏究))

  • Chun, Kun Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.81 no.3
    • /
    • pp.263-272
    • /
    • 1992
  • In a torrential river, the flow of debris forms deposits in the river bed, which show the characteristics of the channel bed movement in the watershed. The annual rings of the trees, in the natural evenaged forests on the deposits, indicate when each deposit occurred. Based on the topographical and vegetational indicators on the sediment of Yongcheon and Yeounae rivers, the movement occurrence years were estimated. 1. The cross sectional shapes of deposits in torrential river are in tiers and even-aged forests tend to establish on each tier. 2. Generally the older the forest age is, the higher the height of step from the lowest base tend to become, which indicates discrete movement in magnitude and frequency. 3. The ages of trees indicate the year when deposition occurred, and so may be useful as plant indicator to get spatial-temporal information of deposits. 4. The deposits volumes(F. V.) were dependent on the age distribution of deposits in length, average width and average height. And the average width and the average height of deposits were increasing with the age.

  • PDF

A study of Improvement on the Road Drainage Poor Site (도로배수 취약구간의 개선방안에 대한 연구)

  • Lee, Man-Seok;Kim, Heung-Rae;Lee, Kyung-Ha;Kang, Min-Soo;Song, Min-Tae
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.125-131
    • /
    • 2011
  • This research aims to investigate the cause of the occurrence of a weak road drainage section scientifically and specifically through a site survey for a poorly drained section occurring due to rainfalls during road operation. This paper deeply reviewed the existing research results and current situation data on the poorly drained sections accumulated in Korea Expressway Corporation in order to investigate the cause of the occurrence of a weak road drainage section, and deeply verified and analyzed the weak sections for the road surface drainage facilities and the other road drainage facilities by visiting the expressway controlled by the 6 local headquarters and 33 branches of Korea Expressway Corporation. As a result of site surveys for the weak road drainage sections, i) in a road surface section, occurrence of ponding in the road shoulder pavement due to slope changes, bad collection of water in the collecting well at a median strip, shortage of road shoulder dike height, and inferior construction, etc. was analyzed to be the main cause of the occurrence of poorly drained sections, and ii) in a road neighborhood section, the occurrence of pavement height difference in a main road and shoulder section due to inferior ditches on a slope and the bad drain age at the inlet and outlet of a culvert due to soil deposits, debris, etc. were analyzed to be the main cause of the occurrence of weak sections. Proposed as a plan to improve the poorly drainage section of road were i)calculation of capacity through material changes at the ditch, enhancement of vertical sections and hydraulic analysis in terms of construction and other aspects, ii)derivation of a combined slope considering a slope and a vertical linearity and maintenance of proper distance between drainage structures in a vertical concave section in terms of geometrical structure, and iii)calculation of the drainage facility installation interval using a minutely rainfall intensity formula and a non-uniform flow analysis technique in terms of hydraulics and hydrologics and prompt removal of rainfalls from the road surface according to a linear drainage method.

Development and Verifying of Calculation Method of Standard Rainfall on Warning and Evacuation for Forest Soil Sediment Disaster in Mountainous Area by Using Tank Model (Tank Model을 이용한 산지토사재해 경계피난 기준우량 산정법 개발 및 검토)

  • Lee, Chang-Woo;Youn, Ho Joong;Woo, Choong Shik
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.3
    • /
    • pp.272-278
    • /
    • 2009
  • This study was conducted to develope calculation method of standard rainfall, which was used for predicting the outbreaking time of disaster by using Tank model, on warning and evacuation for soil sediment disaster. We investigate adeption possibility of developed method through comparing storage function method with Tank model. We calculated storage amount rainfall by storage function method and Tank model with 36 hillslope failures which have record on outbreaking time of disaster. The result in case of Sedimentary (quarternary period) showed that the difference of outbreaking time was 1.6 hour in case of tank model, but 3.2 hour in case of storage function method. In addition, the deviation of the peak storage were 7% in case of tank model, but 63% in case of storage function method. Total evacuation period was analyzed by using observed 5 years (1993-1997) rainfall data as well as each standard rainfalls which were determinated by two methods. The result showed that evacuation time by storage function method was about twice as many as that by tank model. Therefore, we concluded that calculation by tank model for predicting the outbreaking time of disaster was more useful and accurate than storage function method.

Geometric Characteristics of Landslides on Natural Terrain according to the Geological Condition (지질조건에 따른 자연사면 산사태의 기하학적 특성)

  • Kim, Kyeong-Su;Song, Young-Suk;Chae, Byung-Gon;Cho, Yong-Chan;Lee, Choon-Oh
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.75-87
    • /
    • 2007
  • The recognitions of geometrical characteristics and occurrence conditions are very important to evaluate the land-slides in natural terrains. In this paper, the geometrical characteristics of landslides are analyzed according to a geo-logical condition in three landslides areas. The three landslides areas are classified to the geological condition. The three landslides areas are Jangheung, Sangju and Pohang. The geology of Jangheung area, Sangju area and Pohang area is gneiss, granite, and the tertiary sedimentary rock, respectively. During a heavy rainfall of $150{\sim}588mm$ in these areas, 1,582 landslides have occurred in 1998. The geometrical characteristics according to the geological condition analyzed from the investigation of these landslides. The frequency of landslide is high exceedingly above 90% of a slope attitude, while the frequency is very low below 70%. The frequency of landslide is high exceedingly between $26^{\circ}$ and $30^{\circ}$ of slope angle, while the frequency is very low below $20^{\circ}$. The size of the landslides is ranged from several tens to several hundreds The length is ranged from 5 m to 300 m, and the width is ranged from 3 m to 50 m. Also, the depth is less than 1 m. Therefore, the landslides in these areas have small width, long length and shallow depth. The type of the landslides is changed from transitional slide at the scarp to debris flow at the low part of slope.

A Study on Analysis of Landslide Disaster Area using Cellular Automata: An Application to Umyeonsan, Seocho-Gu, Seoul, Korea (셀룰러 오토마타를 이용한 산사태 재난지역 분석에 관한 연구 - 서울특별시 서초구 우면산을 대상으로-)

  • Yoon, Dong-Hyeon;Koh, Jun-Hwan
    • Spatial Information Research
    • /
    • v.20 no.1
    • /
    • pp.9-18
    • /
    • 2012
  • South Korea has many landslides caused by heavy rains during summer time recently and the landslides continue to cause damages in many places. These landslides occur repeatedly each year, and the frequency of landslides is expected to increase in the coming future due to dramatic global climate change. In Korea, 81.5% of the population is living in urban areas and about 1,055 million people are living in Seoul. In 2011, the landslide that occurred in Seocho-dong killed 18 people and about 9% of Seoul's area is under the same land conditions as Seocho-dong. Even the size of landslide occurred in a city is small, but it is more likely to cause a big disaster because of a greater population density in the city. So far, the effort has been made to identify landslide vulnerability and causes, but now, the new dem and arises for the prediction study about the areal extent of disaster area in case of landslides. In this study, the diffusion model of the landslide disaster area was established based on Cellular Automata(CA) to analyze the physical diffusion forms of landslide. This study compared the accuracy with the Seocho-dong landslide case, which occurred in July 2011, applying the SCIDDICA model and the CAESAR model. The SCIDDICA model involves the following variables, such as the movement rules and the topographical obstacles, and the CAESAR model is also applied to this process to simulate the changes of deposition and erosion.

Effect of Turbid Water on Fishes in the Streams of Imha Reservoir (임하호 유입지천에 서식하는 어류에 미치는 탁수의 영향)

  • Yu, Sam-Hwan;Kim, Jeong-Sook;Shin, Myung-Ja;Lee, Jong-Eun;Seo, Eul-Won
    • Journal of Life Science
    • /
    • v.19 no.10
    • /
    • pp.1410-1416
    • /
    • 2009
  • The present study aims to examine the effect of turbid water on fishes in streams which branch into a turbid water area (Yeongyang-gun) and a non-turbid water area (Cheongsong-gun), and finally flow into the Imha reservoir. In a comparison of water quality, the chemical status of the water showed higher pH, DO and SS in the turbid water area than in the non-turbid water area. Also, high density of clay minerals such as vermiculite (V) and illite (I), which is from clay mineral leakage during rainfall, was detected in turbid water, resulting in an increase of turbidity. Fishes inhabiting the turbid water showed irregular spaces in gill lamella, cell separation, edema, and clubbing in epithelial tissues. Also, the gill surface showed roughness and plenty of muddy debris substances inside the gills. The Bowman's space was expanded because of contraction of the glomerulus in the Bowman's space of the kidney tissues. Antioxidant enzymes such as SOD, CAT, GPX, and GST showed higher activities in the specific tissues, muscles and kidney, of fishes living in turbid water than in the non-turbid area. We suggested that; first, the antioxidant activities were increased due to removal of harmful radicals generated in fish bodies in the turbid water area, second, long-time exposure of these histological changes in the tissues might have induced secondary lesion accompanying the inaccurate physiological constancy of fishes.

Influences of Vegetation Invasion on Channel Changes in the Deposition Area of Torrential Stream (계상퇴적지내의 식생침입이 유로변동에 미치는 영향)

  • Ma, Ho-Seop;Lee, Heon-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.3 no.3
    • /
    • pp.12-19
    • /
    • 2000
  • The purpose of this study is to evaluate the channel changes according to the temporal and spatial distribution of the deposition area by the vegetation invasion in Kyesung-river. The deposition area mainly occurred by landslide and debris flow from the headwater channel. And also the movement of subsequent downstream depends upon the site of deposits by a varity erosional processes. As the age of deposition area is older, it had a tendency to stable by plant invasion relatively. The vegetations grown in deposition area were very effective to estimate a historical deformation process of river-bed occurred by landslide. The vegetations around deposition area consisted of the same as tree species grown in forest area of circumference like Pinus densiflora, Styrax japonica, Quercus acutissima and Salix gracilistyla. If the torrential stream is flooding, the deposition area of 1 to 5 years can be change to the channel easily. Deposition area of 11 to 23 years had a high river-bed because it passed long time since deposited, and amount of sedimention is much more in wide than in narrow channel. It is consider that the change of channel had many influenced by the span of survial time, scale and movement frequency of deposition area after the vegetation invasion.

  • PDF

A Study on Rainfall-induced Erosion of Land Surface on Reinforced Slope Using Soil Improvement Material (지반 개량재에 의한 보강사면의 강우시 표면침식에 관한 연구)

  • Kim, You-Seong;Kim, Jae-Hong;Bhang, In-Hwang;Seo, Se-Gwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.1
    • /
    • pp.49-59
    • /
    • 2013
  • Heavy rainfall intensity may cause shallow slope failures and debris flow by rill erosion and scour on land surface. The paper represents the difference between native soil (weathered soil) and reinforced soil, which is mixed by hardening agent with flyash as main material, for investigating experimental findings of rill erosion and erosion. Results obtained from artificial rainfall simulator show that erosion rate of reinforced soil mixed with hardening agent is reduced by 20% because an amount of eroded soil on slope surface is inversely proportional to the increase of soil strength. For example, rainfall of 45mm (at the elapsed time of 25mins in rainfall intensity of 110mm/hr) triggers rill erosion on native soil surface, but the rill erosion on reinforced soil surface does not even occur at 330mm rainfall (at the elapsed time of 3hrs in rainfall intensity of 110mm/hr). As a result of slope stability analysis, it was found that the construction method for reinforced soil surface would be more economical, easy and fast construction technology than conventional reinforcement method.