Browse > Article
http://dx.doi.org/10.12672/ksis.2012.20.1.009

A Study on Analysis of Landslide Disaster Area using Cellular Automata: An Application to Umyeonsan, Seocho-Gu, Seoul, Korea  

Yoon, Dong-Hyeon (서울시립대학교 공간정보공학과)
Koh, Jun-Hwan (서울시립대학교 공간정보공학과)
Publication Information
Abstract
South Korea has many landslides caused by heavy rains during summer time recently and the landslides continue to cause damages in many places. These landslides occur repeatedly each year, and the frequency of landslides is expected to increase in the coming future due to dramatic global climate change. In Korea, 81.5% of the population is living in urban areas and about 1,055 million people are living in Seoul. In 2011, the landslide that occurred in Seocho-dong killed 18 people and about 9% of Seoul's area is under the same land conditions as Seocho-dong. Even the size of landslide occurred in a city is small, but it is more likely to cause a big disaster because of a greater population density in the city. So far, the effort has been made to identify landslide vulnerability and causes, but now, the new dem and arises for the prediction study about the areal extent of disaster area in case of landslides. In this study, the diffusion model of the landslide disaster area was established based on Cellular Automata(CA) to analyze the physical diffusion forms of landslide. This study compared the accuracy with the Seocho-dong landslide case, which occurred in July 2011, applying the SCIDDICA model and the CAESAR model. The SCIDDICA model involves the following variables, such as the movement rules and the topographical obstacles, and the CAESAR model is also applied to this process to simulate the changes of deposition and erosion.
Keywords
Landslide; Cellular Automata; Disaster Simulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bromhead, 1992, "The Stability of Slopes , 2nd edition, New York: Surrey University Press/ Chapman and Hall.
2 Gregorio. S. Di, 1999, "Mount Ontake Landslide Simulation by the Cellular Automata Model SCIDDICA-3", Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, Volume 24, Issue 2, pp. 131-137.   DOI   ScienceOn
3 Ikeya, Hiroshi, 1989, "Debris flow and its countermeasures in Japan", Bull. of the IAEG, Volume 40, pp. 15-33.
4 Ikeya, Hiroshi, 1978, "Classification of debris flows", Civil Engineering Journal, Volume 20, Issue 3, pp. 44-79.
5 Jon D. Pelletier, 1999, "Scale-invariance of soil moisture variability and its implications for the frequency-size distribution of landslides", Journal of Hydrology, Volume 22, Issues 1-2, pp. 71-76.
6 Johnson AM, Rahn PH. 1970. "Mobilization of debris flows". Z. Geomorphol. Suppl. Volume 9, pp. 168-186.
7 Kohei Arai, 2011, "New Approach of Prediction of Sidoarjo Hot Mudflow Disastered", Geoinformatica -An International Journal (GIIJ), Volume 1, Issue 1, pp. 1-11.
8 Wilcock, P.R., and J.C. Crowe. 2003. "Surface-based transport model for mixed-size sediment", ASCE Journal of Hydraulic Engineering, Volume 129, Issues 2, pp. 120-128.   DOI   ScienceOn
9 김정한, 민선홍, 강상혁, 2009, "집중 강우에 따른 토석류 유출의 수치계산", 한국GIS학회지, 제17 권, 제3호, pp. 389-395.
10 김경수, 2006, "지질조건에 따른 강우와 산사태의 특성분석", 대한지질공학회지, 제16권, 제2호, pp. 201-214.
11 김경수, 김원영, 채병곤, 조용찬, 2000, "강우에 의한 산사태의 지질공학적 특성 -충청북도 보은지 역-", 대한지질공학회지, 제10권, 제2호, pp. 163-174.
12 박인혜, 전철민, 이지영, 2008, "CA 모델을 이용한 GIS 기반 화재 대피 시뮬레이션", 한국GIS학회지, 제16권, 제2호, pp. 157-171.
13 안지연, 1997, "셀룰러 오토마타를 이용한 생태확산모형 연구", 이화여자대학교 이학석사 논문.
14 최경, 1986, "한국의 산사태 발생 요인과 예지에 관한 연구", 강원대학교 박사학위 논문.
15 한대석, 김원영, 유일현, 김경수, 이사로, 최영섭, 1997, "지질재해조사연구", 한국자원연구소, KR- 98(C)-03, pp. 1-44.