• 제목/요약/키워드: Day-ahead scheduling

검색결과 11건 처리시간 0.018초

Chance-constrained Scheduling of Variable Generation and Energy Storage in a Multi-Timescale Framework

  • Tan, Wen-Shan;Abdullah, Md Pauzi;Shaaban, Mohamed
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권5호
    • /
    • pp.1709-1718
    • /
    • 2017
  • This paper presents a hybrid stochastic deterministic multi-timescale scheduling (SDMS) approach for generation scheduling of a power grid. SDMS considers flexible resource options including conventional generation flexibility in a chance-constrained day-ahead scheduling optimization (DASO). The prime objective of the DASO is the minimization of the daily production cost in power systems with high penetration scenarios of variable generation. Furthermore, energy storage is scheduled in an hourly-ahead deterministic real-time scheduling optimization (RTSO). DASO simulation results are used as the base starting-point values in the hour-ahead online rolling RTSO with a 15-minute time interval. RTSO considers energy storage as another source of grid flexibility, to balance out the deviation between predicted and actual net load demand values. Numerical simulations, on the IEEE RTS test system with high wind penetration levels, indicate the effectiveness of the proposed SDMS framework for managing the grid flexibility to meet the net load demand, in both day-ahead and real-time timescales. Results also highlight the adequacy of the framework to adjust the scheduling, in real-time, to cope with large prediction errors of wind forecasting.

An Emission-Aware Day-Ahead Power Scheduling System for Internet of Energy

  • Huang, Chenn-Jung;Hu, Kai-Wen;Liu, An-Feng;Chen, Liang-Chun;Chen, Chih-Ting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권10호
    • /
    • pp.4988-5012
    • /
    • 2019
  • As a subset of the Internet of Things, the Internet of Energy (IoE) is expected to tackle the problems faced by the current smart grid framework. Notably, the conventional day-ahead power scheduling of the smart grid should be redesigned in the IoE architecture to take into consideration the intermittence of scattered renewable generations, large amounts of power consumption data, and the uncertainty of the arrival time of electric vehicles (EVs). Accordingly, a day-ahead power scheduling system for the future IoE is proposed in this research to maximize the usage of distributed renewables and reduce carbon emission caused by the traditional power generation. Meanwhile, flexible charging mechanism of EVs is employed to provide preferred charging options for moving EVs and flatten the load profile simultaneously. The simulation results revealed that the proposed power scheduling mechanism not only achieves emission reduction and balances power load and supply effectively, but also fits each individual EV user's preference.

풍력발전의 변동성을 고려한 기동정지계획에서의 적정 Ramping 용량 산정 (Evaluation of Ramping Capability for Day-ahead Unit Commitment considering Wind Power Variability)

  • 류재근;허재행;박종근
    • 전기학회논문지
    • /
    • 제62권4호
    • /
    • pp.457-466
    • /
    • 2013
  • Wind energy is rapidly becoming significant generating technologies in electricity markets. As probabilistic nature of wind energy creates many uncertainties in the short-term scheduling, additional actions for reliable market operation should be taken. This paper presents a novel approach to evaluate ramping capability requirement for changes in imbalance energy between day-ahead market and real-time market due to uncertainty of wind generation as well as system load. Dynamic ramp rate model has been applied for realistic solution in unit commitment problem, which is implemented in day-ahead market. Probabilistic optimal power flow has been used to verify ramping capability determined by the proposed method is reasonable in economic and reliable aspects. This approach was tested on six-bus system and IEEE 118-bus system with a wind farm. The results show that the proposed approach provides ramping capability information to meet both forecasted variability and desired confidence level of anticipated uncertainty.

공간일정계획에서의 부하조정을 위한 방법론 연구 (A Study on method of load attribute for Spatial Scheduling)

  • 백동식;윤덕영;곽현호
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.96-100
    • /
    • 2004
  • In the ship building industry various problems of erection is counterfeited due to formation of bottle necks in the block erection flow pattern This kind of problems cause accumulated problems in real-time erection right on the floor, When such a problem is approached, a support data of the entire erection sequence should be available, Here planning is done by reasoning about the future events in order to verify the existence of a reasonable series of actions to accomplish a goal. This technique helps in achieving benefits like handling search complications, in resolving goal conflicts and anticipation of bottleneck formation well in advance to take necessary countermeasures and boosts the decision support system, The data is being evaluated and an anticipatory function is to be developed This function is quite relevant in day to day planning operation. The system updates database with rearrangement of off-critical blocks in the erection sequence diagram, As a result of such a system, planners can foresee months ahead and can effectively make decisions regarding the control of loads on the man, machine and work flow pattern, culminating to an efficient load management. Such a foreseeing concept helps us in eliminating backtracking related adjustment which is less efficient compared to the look-ahead concept. An attempt is made to develop a computer program to update the database of block arrangement pattern based on heuristic formulation.

  • PDF

전력기기 특성 및 가동 지연 불편도를 고려한 실시간 급작 수요 협상 프레임웍 기반 스마트 그리드 시스템 (Real Time Sudden Demand Negotiation Framework based Smart Grid System considering Characteristics of Electric device type and Customer' Delay Discomfort)

  • 유대선;이현수
    • 전기학회논문지
    • /
    • 제68권3호
    • /
    • pp.405-415
    • /
    • 2019
  • The considerations of the electrical device' characteristics and the customers' satisfaction have been important criteria for efficient smart grid systems. In general, an electrical device is classified into a non-interruptible device or an interruptible device. The consideration of the type is an essential information for the efficient smart grid scheduling. In addition, customers' scheduling preferences or satisfactions have to be considered simultaneously. However, the existing research studies failed to consider both criteria. This paper proposes a new and efficient smart grid scheduling framework considering both criteria. The framework consists of two modules - 1) A day-head smart grid scheduling algorithm and 2) Real-time sudden demand negotiation framework. The first method generates the smart grid schedule efficiently using an embedded genetic algorithm with the consideration of the device's characteristics. Then, in case of sudden electrical demands, the second method generates the more efficient real-time smart grid schedules considering both criteria. In order to show the effectiveness of the proposed framework, comparisons with the existing relevant research studies are provided under various electricity demand scenarios.

냉각 시스템 및 에너지 저장 시스템을 갖춘 상업용 빌딩의 수요자원 거래시장 대응을 위한 운영 스케줄링 (Operation Scheduling in a Commercial Building with Chiller System and Energy Storage System for a Demand Response Market)

  • 손준호;노대석
    • 한국산학기술학회논문지
    • /
    • 제19권8호
    • /
    • pp.312-321
    • /
    • 2018
  • 한국의 수요자원(Demand Response, DR) 거래시장은 자연재해 또는 예기치 않은 발전소 사고로 인한 전력수급 위기 시 최대수요를 억제하며, 발전소 건설비용 절감 및 운영예비력 확보를 위한 목적으로 운영되고 있다. 수요자원 거래시장에 참여한 수용가는 전력거래소로부터 수요 감축 1시간 전 급전지시를 통보 받으며, 요청된 수요자원 감축을 통하여 기본급과 실적금을 정산 받는다. 본 논문에서는 냉각 시스템과 ESS을 갖춘 수용가가 계시별요금제와 수요자원 거래시장에 동시 참여 시, 최적 운영계획 수립을 위한 DR 에너지관리 알고리즘을 제안 하였다. 제안된 알고리즘은 주위온도 예측오차가 있는 전일 운영 스케줄링과 DR 운영일 리스케줄링의 두 가지 운영 스케줄링으로 구성된다. 전일 운영 스케줄링의 경우, 냉각 시스템, ESS의 운영스케줄링은 과거 주위온도 데이터를 기반으로 생성된 주위온도 시나리오와 불확실한 DR감축 시나리오에 의해 결정된다. 또한 DR 운영일에 대한 리스케줄링은 수용가의 DR 수익과 건물내부 열괘적성이 보장되며 제안된 방법은 혼합정수 선형 프로그래밍(Mixed Integer Linear Programming, MILP)에 의해 기대 에너지 비용을 최소화한다.

Optimal Scheduling of Utility Electric Vehicle Fleet Offering Ancillary Services

  • Janjic, Aleksandar;Velimirovic, Lazar Zoran
    • ETRI Journal
    • /
    • 제37권2호
    • /
    • pp.273-282
    • /
    • 2015
  • Vehicle-to-grid presents a mechanism to meet the key requirements of an electric power system, using electric vehicles (EVs) when they are parked. The most economic ancillary service is that of frequency regulation, which imposes some constraints regarding the period and duration of time the vehicles have to be connected to the grid. The majority of research explores the profitability of the aggregator, while the perspective of the EV fleet owner, in terms of their need for usage of their fleet, remains neglected. In this paper, the optimal allocation of available vehicles on a day-ahead basis using queuing theory and fuzzy multi-criteria methodology has been determined. The proposed methodology is illustrated on the daily scheduling of EVs in an electricity distribution company.

Bargaining-Based Smart Grid Pricing Model for Demand Side Management Scheduling

  • Park, Youngjae;Kim, Sungwook
    • ETRI Journal
    • /
    • 제37권1호
    • /
    • pp.197-202
    • /
    • 2015
  • A smart grid is a modernized electrical grid that uses information about the behaviors of suppliers and consumers in an automated fashion to improve the efficiency, reliability, economics, and sustainability of the production and distribution of electricity. In the operation of a smart grid, demand side management (DSM) plays an important role in allowing customers to make informed decisions regarding their energy consumption. In addition, it helps energy providers reduce peak load demand and reshapes the load profile. In this paper, we propose a new DSM scheduling scheme that makes use of the day-ahead pricing strategy. Based on the Rubinstein-Stahl bargaining model, our pricing strategy allows consumers to make informed decisions regarding their power consumption, while reducing the peak-to-average ratio. With a simulation study, it is demonstrated that the proposed scheme can increase the sustainability of a smart grid and reduce overall operational costs.

Optimal Voltage and Reactive Power Scheduling for Saving Electric Charges using Dynamic Programming with a Heuristic Search Approach

  • Jeong, Ki-Seok;Chung, Jong-Duk
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권2호
    • /
    • pp.329-337
    • /
    • 2016
  • With the increasing deployment of distributed generators in the distribution system, a very large search space is required when dynamic programming (DP) is applied for the optimized dispatch schedules of voltage and reactive power controllers such as on-load tap changers, distributed generators, and shunt capacitors. This study proposes a new optimal voltage and reactive power scheduling method based on dynamic programming with a heuristic searching space reduction approach to reduce the computational burden. This algorithm is designed to determine optimum dispatch schedules based on power system day-ahead scheduling, with new control objectives that consider the reduction of active power losses and maintain the receiving power factor. In this work, to reduce the computational burden, an advanced voltage sensitivity index (AVSI) is adopted to reduce the number of load-flow calculations by estimating bus voltages. Moreover, the accumulated switching operation number up to the current stage is applied prior to the load-flow calculation module. The computational burden can be greatly reduced by using dynamic programming. Case studies were conducted using the IEEE 30-bus test systems and the simulation results indicate that the proposed method is more effective in terms of saving electric charges and improving the voltage profile than loss minimization.

Development of ESS Scheduling Algorithm to Maximize the Potential Profitability of PV Generation Supplier in South Korea

  • Kong, Junhyuk;Jufri, Fauzan Hanif;Kang, Byung O;Jung, Jaesung
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2227-2235
    • /
    • 2018
  • Under the current policies and compensation rules in South Korea, Photovoltaic (PV) generation supplier can maximize the profit by combining PV generation with Energy Storage System (ESS). However, the existing operational strategy of ESS is not able to maximize the profit due to the limitation of ESS capacity. In this paper, new ESS scheduling algorithm is introduced by utilizing the System Marginal Price (SMP) and PV generation forecasting to maximize the profits of PV generation supplier. The proposed algorithm determines the charging time of ESS by ranking the charging schedule from low to high SMP when PV generation is more than enough to charge ESS. The discharging time of ESS is determined by ranking the discharging schedule from high to low SMP when ESS energy is not enough to maintain the discharging. To compensate forecasting error, the algorithm is updated every hour to apply the up-to-date information. The simulation is performed to verify the effectiveness of the proposed algorithm by using actual PV generation and ESS information.