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Abstract – This paper presents a hybrid stochastic deterministic multi-timescale scheduling (SDMS) 
approach for generation scheduling of a power grid. SDMS considers flexible resource options 
including conventional generation flexibility in a chance-constrained day-ahead scheduling 
optimization (DASO). The prime objective of the DASO is the minimization of the daily production 
cost in power systems with high penetration scenarios of variable generation. Furthermore, energy 
storage is scheduled in an hourly-ahead deterministic real-time scheduling optimization (RTSO). 
DASO simulation results are used as the base starting-point values in the hour-ahead online rolling 
RTSO with a 15-minute time interval. RTSO considers energy storage as another source of grid 
flexibility, to balance out the deviation between predicted and actual net load demand values. 
Numerical simulations, on the IEEE RTS test system with high wind penetration levels, indicate the 
effectiveness of the proposed SDMS framework for managing the grid flexibility to meet the net load 
demand, in both day-ahead and real-time timescales. Results also highlight the adequacy of the 
framework to adjust the scheduling, in real-time, to cope with large prediction errors of wind 
forecasting.  
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1. Introduction 
 
The main disadvantage of variable renewable generation 

resources relative to conventional generation is their high 
intermittency, unpredictable fluctuations and limited output 
control capability. Consequently, these cause existing 
power system operation paradigms, especially generation 
scheduling, to face profound challenges [1]. A grid system 
with extra flexibility resources is needed to even out the 
intermittency and variability of wind generation in order to 
enable the high penetration of variable generation into the 
grid system. 

Different approaches have been proposed in the 
literature to investigate the effect of adding various levels 
of variable renewable generation into the generation mix [2-
5]. Chance-constrained programming is an alternate option 
to the modelling of uncertainties in power systems, in 
which constraints can be violated with a predefined level of 
probability [6]. The chance constraints are often converted 
into deterministic equivalents and a standard solution 
technique is applied to solve the stochastic power system 

problem, such as the optimal power flow [7] and trans-
mission planning problem [8]. Throughout the literature, 
researchers have proposed chance-constrained optimization 
to solve the generation scheduling problem with only 
demand uncertainty [9, 10], only wind uncertainty [11, 
12], or both simultaneously [13-15]. In [12], the authors 
proposed a generation scheduling problem, with uncertain 
wind power, formulated as a two-stage chance-constrained 
stochastic program; which ensures a large portion of the 
wind power output at each operating hour could be utilized. 
In [11], a chance constraint is proposed to restrict the 
probability of load imbalance. A sample average approxi-
mation (SAA) algorithm, [16], was ubiquitously proposed 
in the above generation scheduling models, [10-13], to 
replace the chance constraint, by a pointwise constraint 
that must hold at a finite number of sample points drawn 
randomly from the chance constraint distribution. However, 
the SAA algorithm requires repetitive iterations and 
multiple validation scenarios to calculate the optimality 
gap for solution validation. These drawbacks make the 
SAA unsuitable for large scale generation scheduling 
problem formulation that requires long processing time. 

The prospect for deployment of the emerging energy 
storage has become much more possible in recent years. 
Storage devices are expected to have the potential to 
become competitive under high penetration levels of 
renewable generation. This, in turn, will improve power 
system reliability, meet real-time power demand, and 
enhance economic efficiency [17]. Successful cases of bulk 
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energy storage installations are emerging [18]. The fast 
ramping capability provides energy storage the ability to 
better manage the variability of renewable generation in a 
smaller timescale as hour-ahead real-time scheduling 
optimization (RTSO). Several studies have addressed the 
importance and value of storage devices in power systems 
[17, 19]. The authors in [19] have introduced utility-scale 
energy storage as part of a set of control measures in a 
corrective form of the full stochastic security-constrained 
unit commitment (SCUC) problem.  

Multi-timescale scheduling is already adopted in some 
power markets to accommodate large-scale variable 
renewable generation [1]. Economic benefits of considering 
stochastic nature of wind on multi-timescale generation 
scheduling and dispatch were examined through higher 
frequency of rolling reschedule with the most updated 
wind forecast [5]. In [20], multi-timescale scheduling that 
includes mid-term (few days) and day-ahead scheduling, 
is proposed for better scheduling of slow start-up coal 
generation in a wind-coal intensive power system. In this 
paper, a short-term day-ahead and intra-hour real-time 
online rolling scheduling framework is proposed, for 
reducing the search space of real-time scheduling. In 
[21], the authors proposed a multi-timescale coordinated 
automatic power dispatching system which provides 
incremental refinement in sequence timescale, according 
to the precision in predicting wind power in different 
timescales. The framework has been implemented in Jilin 
provincial power grid, China. Whereas a similar concept 
is implemented herein, wind generation uncertainty and 
energy storage are distinctively incorporated into the 
multi-timescale scheduling framework developed in this 
paper. 

This paper proposes a hybrid stochastic deterministic 
multi-timescale scheduling (SDMS) framework. The 
framework is composed of a generation scheduling model 
which considers two flexible resource component options. 
The first is the chance-constrained day-ahead scheduling 
optimization (DASO) with conventional generation. Its 
main objective is to minimize the daily production cost in a 
power system with variable renewable energy resources. 
The second is the deterministic hour-ahead online rolling 
RTSO with energy storage scheduling. The proposed SDMS 
framework avoids the dimensionality problem associated 
with full stochastic formulation. Wind curtailment is 
included in the DASO, as a decision variable that reshapes 
the probability density function (PDF) of the predicted 
wind power [22], and as a variable in the RTSO. A discrete 
distribution chance constrained formulation is applied, 
which can be theoretically solved to optimality, by 
employing a linearization approach. The proposed chance 
constrained formulation does not require an approximation 
approach, such as the sample approximation average 
(SAA) [12, 13], that deals with continuous distribution 
formulation and requires multiple iterations and long 
computation time. An MILP formulation, called the 

extended approach [16], is proposed to linearize the chance 
constraint in the DASO problem. The contribution of this 
paper is listed as follows: 

1) The chance-constrained scheduling is formulated in a 
multi-timescale framework. The use of a chance-
constrained model averts the need for the computa-
tionally demanding scenario-based solutions; typically 
needed for full stochastic optimization. 

2) Unlike other multi-timescale scheduling approaches that 
consider fully deterministic or fully stochastic models in 
all timescales, the proposed SDMS framework uniquely 
adopts a discrete distribution chance-constrained 
DASO that takes full consideration of inter-temporal 
ramping constraints as well as transmission line 
thermal constraints, and a deterministic RTSO with 
energy storage. The main objective of RTSO is to 
balance out the net load deviation between different 
timescales. RTSO utilizes the DASO results as 
boundary conditions, to further reduce the search space 
and the computational requirements. This makes the 
formulation more intuitive and practical from the 
standpoint of industrial realization, while preserving 
the same features of stochastic optimization. 

3) As operational uncertainties can be large through the 
DASO dispatch, the 15-min interval, completely deter-
ministic, RTSO formulation utilizes the newly updated 
wind and load forecast information to provide accurate 
dispatch through online rolling scheduling. The 
combination of stochastic and deterministic models is 
the distinguishing feature that singles out the proposed 
framework from others. 

4) The adoption of discrete distribution in the chance 
constrained DASO promotes the use of linearization to 
transform the chance-constrained problem into a more 
tractable form, of an MILP structure. The latter 
warrants solution of the problem efficiently, using 
available optimization solvers. 

 
The remaining structure of the paper is as follows: Section 

2 expounds the multi-timescale scheduling framework. 
Section 3 describes the flexibility chance-constrained 
DASO formulation and the linearization of the formulation 
to a mixed-integer linear form. Section 4 models the RTSO 
with energy storage constraints. Section 5 presents the case 
studies and results. Finally, Section 6 concludes. 

 
 
2. A Multi-Timescale Scheduling Framework 

 
2.1 Nomenclature 

 
Functions 

genC  Generation cost 
startupC  Startup cost 

NDR  Net demand ramp 
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Indices 
h 15 minutes scheduling interval {1 }HÎ K  
i, k Generator {1 }IÎ K   
j Storage {1 }JÎ K  
l Stair-wise intervals number of unit i {1 }LÎ K  
m Constraint {1 }MÎ K  
s Net demand discrete level {1 }SÎ K  
t, n Hourly scheduling interval {1 24}Î K  

 
Continuous variables at time t or h 

ihdG  Generation deviation for unit i [MW] 
net
tD  Scheduled mean value of net demand [MW] 

jte  State of charge (SOC) of storage j [%] 
up
itflex  Scheduled up flexibility of unit i [MW] 

,on up
itflex  Schedule up flexibility of online unit i [MW] 

,off up
itflex  Schedule up flexibility of offline unit i [MW] 
dn
itflex  Scheduled down flexibility of unit i [MW] 

itG / ihG  Scheduled generation of unit i [MW] 
W
hG  Wind generation [MW] 
net
stp  Probability of net demand being equal to net

td  
when wind power is curtailed 

c
jtq / d

jtq  Charge/discharge of energy storage j [MW] 
stx  Linearization variable of discrete level s 
 

Binary variables at time t 
on
itA  Availability to be online of generation units i 
off
itA   Availability to be offline of generation units i 

itI  On/off status of generation units i 
jtJ  Charge/discharge status of storage j 

stz , stu  Probabilistic auxiliary variable of discrete level s 
 

Parameters 
total
tD / total

hD  Predicted total demand at time t or h [MW] 
net
stD  Discrete realizations of level s at time t [MW] 

itdG  Generation deviation limit for unit i [MW] 
min
je / max

je  Min/max state of charge of storage j [MW] 
up
jhe / dn

jhe  Up/down limit for SOC of storage j at time h 
[%] 

0
jE  Initial SOC of storage j at initial time [%] 
Sch
ihG  Previous iteration hour-ahead scheduled 

generation result of unit i [MW] 
min
itG / max

itG  Min/max power output of unit i at time t [MW] 
iHr  Incremental heat rate of unit i [Btu/kWh] 

c
jh / d

jh  Efficiency rate to charge/discharge of storage j 
on

iT / off
iT  Minimum on/off time of unit i [hr] 

min,c
jhq / max,c

jhq Min/max charge power of storage j at time h  
    [MW]  

min,d
jhq / max,d

jhq  Min/max discharge power of storage j at time  
    h [MW] 

up
ir / dn

ir  Ramp up/down rate limit of unit i [MW] 
tSR  Spinning reserve at time t [MW] 
ilSU  Startup cost of stair-wise level l of unit i [$] 

0
tW  Expected wind generation at time t [MW] 
gen
ip  Incremental fuel cost of unit i [$/Btu] 
c
jp / d

jp  Charge/discharge cost of storage j [$/MWh] 
ε Confidence level of chance constraint 
Δ Real-time slot [hr] 

2.2 Multi-timescale scheduling 
 
The hybrid stochastic deterministic multi-timescale 

scheduling (SDMS) framework is comprised of two 
components interacting with each other; namely DASO 
and RTSO. The SDMS framework, advocated in this 
study, is illustrated in Fig. 1. In reality, the day-ahead 
wind prediction error could be large, whereas the real-time 
prediction error is insignificant, and mostly consists of 
small wind variations. Therefore, DASO is formulated as 
a chance-constrained scheduling problem to accommodate 
substantial wind and load uncertainty, while RTSO is 
expressed as pure deterministic problem to deal with the 
limited deviation between the hourly-ahead simulation 
and actual net demand. Specifically, system operators 
obtain energy supply from both conventional and wind 
generation, and manage the demand of energy users via 
day-ahead and real-time scheduling respectively. Con-
ventional generation, in order, is drawn from two sources: 
base-load generators (e.g., nuclear and hydro units) and fast-
start generators (gas turbines). Energy supply procurement 
is performed in two stages, i.e., day-ahead and real-time 
scheduling, at different timescales.  

In day-ahead scheduling, which runs every 24 h, at 1-
hour time resolution, with prediction information of wind 
generation and traditional energy user demand, system 
operator decides on the generation scheduling for the 
next day. The real-time or hourly-ahead online rolling 
scheduling is performed every 1-hour, to determine the 
generation output of all units in the upcoming 3-hours, 
with a time resolution of 15-min. Fig. 2 shows the day-

 
Fig. 1. Stocahstic determinstic multi-timescale scheduling 

(SDMS) framework 
 

 
Fig. 2. Scheduling horizon and timescales 
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ahead hour t1 to t3 DASO results, to be used as real-time 
scheduling based results, for 12 intra-hour intervals h1 to 
h12. The combination of t2 and t3 hour intervals with the 
DASO t4 schedule are used for the next online rolling real-
time scheduling. The process continues throughout the day. 

Upon realization of wind generation and demand, SDMS 
will re-dispatch real-time generation based on the simulated 
DASO results, to close the deviation gap between demand 
and supply. The utilization of DASO results, which include 
scheduled generation and the on/off status, reduces the 
search space of the real-time problem formulation. It, 
therefore, becomes amenable to be cast in a deterministic 
form, to further reduce the computational requirements. 
Energy storage is implemented to balance out the large 
deviation gap, as well as to avoid wind curtailment. It is 
worth noting that the above framework, which consists of 
day-ahead and real-time scheduling, is developed based on 
the state-of-the-art scheduling schemes of power system 
market [1]. 

 
 

3. Day-Ahead Scheduling Optimization (DASO) 
 
The first component of the SDMS framework is the 

day-ahead scheduling optimization (DASO). DASO is a 
chance-constrained optimization problem that models the 
flexibility of conventional generation as a chance constraint, 
with wind power availability and load demand uncertainty. 
The details of the DASO formulation are given as: 

 

, ,
,

min ,gen it startup it
i t

C C i té ù+ "ë ûå   (1) 

s.t. 

, ,gen
gen it it i iC G Hr i tp= * * "   (2) 

, 0 ,startup itC i t³ "   (3) 

,
1

( ) , ,
l

startup it il it i
n

C SU I I l n l i t
=

é ù
³ - - "ê ú

ë û
å  (4) 

0 , ,total
t it t

i
W G D i t+ = "å  (5) 

, ,
net
t it

i
D G i t= "å    (6) 

Pr 1 , , ,dn up
it st it

i i
flex NDR flex s i teæ ö- £ £ ³ - "ç ÷

è ø
å å   (7) 

s( 1) , ,
netnet
tst tNDR D D s t+= - "   (8) 

, , , ,up on up off up
it it itflex flex flex i t= + "   (9) 

( ), maxmin , , ,on up up
it i it it itflex r G G I i t= - * "   (10) 

( ) ( ), maxmin , 1 , ,off up up on
it i it it itflex r G I A i t= * - * "   (11) 

( )( )( )minmin , 1 , ,dn dn off
it i it it it itflex r G G A I i t= - * - * "  (12) 

max

1
, ,

NG
total

it it t t
i

G I D SR i t
=

* ³ + "å   (13) 

( ) , ,up
it i t i iG G r i t-- £ "    (14) 

( 1) , ,dn
i t it iG G r i t- - £ "    (15) 

( 1) 0, (1 ( 1) ), , ,on
i t it k iI I I k t T i k t-- + - £ £ - - £ "  (16) 

( 1) 1, (1 ( 1) ), , ,off
i t it k iI I I k t T i k t- - + £ £ - - £ "   (17) 

min max , ,it it it it itG I G G I i t* £ £ * "   (18) 
 
The objective function (1) consists of electricity pro-

duction fuel cost (2), and startup cost (3) - (4), over a 24-
hour scheduling horizon. The hourly scheduling constraints 
listed above denote the following: 
l Eq. (5) is the system power balance constraint; 
l Eq. (6) is the hourly power balance between expected 

value of net demand and scheduled generation; 
l Eq. (7) entails that the probability of net demand ramp 

(NDR) remains within the up and down flexibility 
limits. In other words, generation ramping and reserve 
capability should be greater than or equal to a threshold 
value 1 e- ; 

l Eq. (8) is the NDR formulation, defined as the 
difference between discrete realizations of the net 
demand at hour t+1 and expected value of the net 
demand at hour t; 

l Eq. (9)-(12) define the up and down flexibility indices 
[18]; 

l Eq. (13)-(18) consist of system spinning reserve 
requirement, unit ramping up and ramping down limits, 
unit minimum on/off time limit, and unit maximum/ 
minimum generation limits. 

 
The nonlinear production cost of thermal generating 

units is approximated by a piecewise linear function. A 
stair-wise startup cost function (3) – (4) is implemented to 
discretize the startup cost formulation [23]. By replacing 
constraints (7) and (10) through (12) with equivalent linear 
forms, the proposed formulation can be expressed in the 
MILP form. Details of the linearization can be found in 
[22], and [24]. 

Big-M formulation [22, 24], is a conventional 
linearization technique used to transform (7) into a discrete 
linear formulation as: 

 

,, s( 1), , 0
netdn net
st lit l t l st l

i
flex D D z M++ - + ³å    (19) 

,, s( 1), , 0
netup net
st lit l t l st l

i
flex D D z M+- + + ³å   (20) 

, ( 1),
net

st l s t l
s

z p e+ £å    (21) 

 
where M is a very large positive number. 

A computationally efficient extended formulation for 
linearizing the chance constraint (7) is proposed to solve 
the DASO [16]. The extended formulation is expressed by 
adding the star-inequalities, as described below:  
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( )

,,

1

, s( 1), s 1( 1), 1( 1),
1

, , , ,

netdn
t mit m

i
S

net net net
st m t m t m t m

s

flex D

u D D D i s t m
-

+ + + +
=

-

+ - ³ - "

å

å
 (22) 

( )

,,

1

, s( 1), s 1( 1), 1( 1),
1

, , , ,

netup
t mit m

i
S

net net net
st m t m t m t m

s

flex D

u D D D i s t m
-

+ + + +
=

+

+ - ³ "

å

å
  (23) 

, ( 1) , 0, , ,st m s t mu u s t m+- ³ "   (24) 

, , 0, , ,st m st mz u s t m- ³ "    (25) 

, 0, , ,st mu s t m= "    (26) 

, , , , ,net
st m st m

s
z p s t me£ "å   (27) 

, ,0 , , ,st m st mx z s t m£ £ "   (28) 

, , ,0 1 , , ,net
st m st m st mp x z s t m£ - £ - "   (29) 

 
Since the extended formulation requires the discrete 

realization to be arranged in descending form, without loss 
of generality, net demand is arranged in descending format 
for (22), and ascending format for (23). 

 
 
4. Real-Time Scheduling Optimization (RTSO) 
 
The second component of the SDMS framework is 

concerned with the real-time deterministic scheduling 
formulation of wind power generation. The main objective 
is to neutralize the deviations of the day-ahead predicted 
load demand and predicted wind generation with the more 
accurate real-time prediction data. The detailed formulation 
can be listed as follows: 

 

, ,
min , ,gen c c d d

i ih i j jh j jh
i h j h

G Hr q q i j hp p pD + D + D "å å   (30) 

s.t. 
, , ,c d total W sch

ih jh jh h h ih
i

dG q q D G G i j h- D + D = - - "å   (31) 

( )minmax , , ,Sch Sch
ihih ih ih ih ih ihdG G I G G G dG i h³ - - - "   (32) 

( )maxmin , , ,Sch Sch
ihih ih ih ih ih ihdG G I G G G dG i h£ - - + "   (33) 

( ) ( )( 1) ( 1) , ,up
ih ih i h i h iG dG G dG r i h- -+ - + £ D "   (34) 

( ) ( )( 1) ( 1) , ,dn
i h i h ih ih iG dG G dG r i h- -+ - + £ D "   (35) 

min max , ,ih ih ih ih ih ihG I G dG G I i h* £ + £ * "   (36) 

( ) ( )min, max,1 1 , ,c c c
jh jh jh jh jhq J q q J j h- £ D £ - "   (37) 
min, max, , ,d d d
jh jh jh jh jhq J q q J j h£ D £ "   (38) 

, 1 max

1 1 , ,c c d
jh j h j jh jhd

j j

e e q q j h
e

h
h-

é ù
= + D - "ê ú

ê úë û
  (39) 

 
min

max 1, ,j
jh

j

e
e j h

e
£ £ "   (40) 

 0
,0 , , ,j j H je e E j h= = "   (41) 

 , ,dn up
jh jh jhe e e j h£ £ "   (42) 

 
The objective function (30) consists of electricity pro-

duction fuel cost, and energy storage charging/discharging 
cost over a 3-hour online rolling scheduling horizon. Each 
hour is divided into four intervals, 15 minutes each. The 
hourly scheduling constraints can be described as: 
l Eq. (31) is the system power balance constraint, to 

ensure that generation deviation and energy storage 
charging or discharging should be equal to the total 
deviation between the current and former net demand; 

l Eq. (32) and (33) are the generation deviation constraints; 
l Eq. (34) and (35) are the ramp up and ramp down limits; 
l Eq. (36) is the maximum/minimum generation limits; 
l Eq. (37) and (38) are the upper and lower bounds of 

charging and discharging constraints for energy storage; 
l Eq. (39) is the state of charge (SOC) constraint; 
l Eq. (40) is the maximum and minimum SOC limit; 
l Eq. (41) suggests that the SOC at the initial and at the 

last period (h = NH) should be the same; while (42) 
limits the SOC within upper and lower bounds. These 
bounds are called cone shape constraints, and will be 
explained in the next subsection. 

 
4.1 Cone shape constraints 

 
To ensure that the initial and the last hour SOC are equal 

to a predetermined value(s), and the energy storage SOC 
follows a daily cycle, a storage SOC constraint is imposed 
[17, 19]. In SDMS, energy storage is implemented in the 
RTSO. To achieve the same energy storage SOC daily 
cycle, the cone shaped constraint is proposed. The cone-
shaped constraint, Fig. 3, gives full freedom to the energy 
storage to ramp-up or ramp-down in the initial hours of the 
day. After a preset time, (e.g. 12 hours) the maximum and 
minimum SOC limits starts to shrink and this continues 
until it reaches the daily cycle initial SOC level, which is 
set to 50% SOC in the SDMS framework. 

 
Fig. 3. Cone shape energy storage state of charge constraint 
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5. Case Studies 
 
The proposed SDMS framework is applied to the IEEE 

Reliability Test System RTS-96; that consists of 24 buses 
and 32 generating units [25]. The U400 nuclear units and 
U50 hydro units are assumed to be always ON for 
simplicity. The coal-fired plant U350 is closed down and 
replaced by 800 MW and 1600 MW wind generation (25% 
and 50% penetration level) [22]. The load demand of the 
first day of the year is utilized. We have considered a 
horizon of 24 hours, each hour is divided into 4 periods of 
15 min each to represent the real time, i.e., D = 1/4. For the 
sake of simplicity, we have considered two equal energy 
storage units, with 800 MWh capacity each. The initial 
energy level of the storage units is set to 50% of their 
capacities (400 MWh). The maximum and minimum limits 
for power charging or discharging are both 400 MW. The 
cost of charging or discharging in the storage unit is 
$0.5/MWh and $0.1/MWh, respectively. The efficiency 
rates are set to 90% [17]. 

 
5.1 Wind generation and load prediction errors 

 
For DASO, the day-ahead load prediction error is 

assumed to be following a normal distribution with zero 
mean value. Its standard deviation is 2% of the daily peak 
load. The hourly day-ahead wind power prediction is 
simulated by a time series autoregressive moving average 
(ARMA) forecast model, with mean average error up to 
16%, based on hourly wind measurements for the province 
of Ontario, Canada [26]. The hourly wind power prediction 
is fitted into a probability density function (PDF) with 
generalized extreme value distribution for low predicted 
wind power (< 0.3 p.u.). Beta distribution is used to fit the 
remaining wind power prediction [22]. Fig. 4 illustrates the 
PDF for several levels of wind power forecast. The PDFs 
are converted into 19 discrete level PDF, with 0.05 p.u., or 
40 MW sampling rate. 

For the RTSO, the real-time load and wind generation 
data are assumed to be perfectly predicted for the first hour 
and the ARMA forecast model is applied for the second 

and third hour-ahead simulation. The maximum deviation 
limit is set to 15% of maximum generation for each 
generator. 

We have chosen a day where the deviation of wind is 
considerable, with a mixture of under-prediction and over-
prediction of wind generation, as the case study in this 
paper. The predicted and actual wind generation and load 
demand curves across 24 hours are illustrated in Fig. 5, and 
the resultant net demand curve is shown in Fig. 6. The 
actual net demand curve is captured after the end of the 
day. Fig. 6 shows the amount of deviation between day-
ahead prediction and real-time actual data. The sizeable 
deviation in 5th hour (about 400 MW) will require energy 
storage to compensate for the shortfall, since conventional 
generation are constrained not to exceed 15% deviation 
from the day-ahead generation scheduling results. The 
SDMS framework will update the net demand prediction 
every hour in the RTSO with 3 hour-ahead prediction, thus 
the deviation will be gradually reduced in each iteration to 
be countered by conventional generation ramp as well as 
the energy storage.  

The resulting mixed-integer optimization problems, are 
coded in C++ and solved using CPLEX 12.6 optimization 
package, on a computer with Intel Core i5 3.20 GHz and 
10 GB memory.  

 
5.2 Numerical results 

 
The proposed SDMS framework is implemented on 

Wind Power (MW) Forecasted wind (p.u.)

0
0 1

0.2

200 0.8
0.6

0.4

400
0.4600

0.6

0.2
800 0  

Fig. 4. Probabilistic density function for various levels of 
wind power forecast 

 
Fig. 5. Predicted vs. actual wind generation and load 

demand for day-ahead, with 50% wind penetration. 

 
Fig. 6. Predicted day-ahead net demand vs. real-time actual 

net demand, with 50% wind penetration 
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multiple test cases to verify the effectiveness and 
robustness of the multi-timescale scheduling model. Four 
test cases are considered: 1) DASO base case with thermal 
units only. 2) Impact of increasing wind penetration level 
on DASO thermal unit operation. 3) Effect of increasing 
confidence levels of the chance constraint in DASO. 4) 
DASO and RTSO results are contrasted and discussed. 

Case 1. The base case is run without wind generation, 
to provide a comparison platform for other test cases. As 
shown in Table 1, the day-ahead production cost is 
$369,580 which includes $366,996 fuel cost, and $2584 
start-up cost.  

Case 2. Optimality gap value of 0.05% and various 
reliability levels, 1-ε, are set for the chance-constrained 
DASO. An Optimality gap defines the gap or difference 
between the upper bound and lower bound of the simulation 
results, while a reliability level defines the probability 
that the flexibility chance constraints are enforced on the 
proposed problem. 

Table 2 clearly indicates there is a substantial decrease 
in total production cost, when a higher level of wind 
penetration is implemented. The production cost drops to 
$215,160 and $123,235 for 25% and 50% wind penetration 
with 95% confidence level respectively. Wind curtailment 
occurs in case of 50% wind penetration, because of the 
insufficient grid flexibility from thermal generation. Whereas 
upward flexibility has increased, downward flexibility 
has decreased when wind penetration level increases from 
25% to 50%; reflecting the effect of less conventional 
generation commitment, along with higher wind penetration. 

Case 3. In this test case, the confidence level of the 
proposed flexibility based chance constraint is set to various 
percentage levels, to verify the effect of the flexibility 
requirement on the DASO generation scheduling. The 
chance constraints in the DASO are dealing with discrete 
and finite distribution of the net load, which can be 

theoretically solved to optimality, by utilizing a lineariza-
tion approach. Therefore, both linearization approaches, 
the Big-M and the proposed extended formulation, 
precisely linearize the chance constraint, without utilizing 
any approximation throughout the process. In addition, the 
same MILP solver, CPLEX, is employed, which ensures 
both approaches converge to the same scheduling results. 
At 25% wind penetration level, all confidence levels came 
out with the same results and zero wind curtailment. This 
implies that the chance constraint is redundant in this case 
and the power system has adequate flexibility. Moreover, 
results also corroborate that current system operation 
practices are still efficient enough to cope with the 
variability and uncertainty from low penetration levels of 
variable renewable generation. In case of the higher 50% 
wind penetration level, as the confidence level increases, 
indicating a stiffer flexibility requirement, the production 
cost increases. This is mainly due to the increase in wind 
curtailment, as the system has insufficient downward 
flexibility. Additionally, the decrease of upward flexibility, 
and increase of downward flexibility, shown in 50% wind 
penetration level in Table 1, as confidence level increases, 
further enlarges the production cost. The rise of production 
cost is attributed to the opportunity cost involved when 
expensive generation is scaled up to provide for the 
downward flexibility. 

Case 4. DASO deterministic result (no wind) and the 
result with 95% confidence level, in Table I, are chosen as 
the base input for the RTSO. The optimality gap for the 
RTSO is set to 0.01%. DASO and RTSO results for 0% 
wind are $369,580 and $368,892 respectively. The minor 
cost variations are mainly due to load demand forecast 
error. On the other hand, the DASO and RTSO results for 
50% wind penetration are $123,235 and $111,651. The 
lower cost of real-time scheduling is mainly due to the 
lower values of actual net demand in real-time as compared 
to the day-ahead predicted net demand, as depicted in Fig. 
6. 12.35% of wind is curtailed for 50% wind penetration in 
the DASO, whereas there is no wind curtailment in the 
RTSO case. This is due to the flexibility provided by the 
energy storage to counter the deviation, as well as the 
variability of wind generation. In addition, the computation 
time required by the DASO is 366 seconds, whereas for the 

Table 1. Results for the RTS-96 in the DASO with Various Wind Penetration 

Comp. Time Wind (%) 1-ε (%) Prod. Cost ($) Wind Curt. (%) Flex-up (MW) Flex-dn (MW) 
Ext. (sec) Big-M (sec) 

0 - 369,580 - - - 5.03 
95 215,160 0.00 20,513 19,930 28.31 38.83 
80 215,160 0.00 20,513 19,930 27.44 37.22 
50 215,160 0.00 20,513 19,930 22.14 33.31 

25 

30 215,160 0.00 20,513 19,930 16.00 27.63 
95 123,235 12.35 23,228 13,849 366.58 533.94 
80 122,153 11.74 23,297 13,706 274.41 337.33 
50 122,009 11.63 23,407 13,784 184.83 212.95 

50 

30 121,928 11.55 24,372 12,389 176.75 210.84 
 

Table 2. Results for the RTS-96 in the RTSO 

Wind 
(%) 

Prod. 
Cost ($) 

ES Cost 
($) 

Total 
Cost ($) 

Wind 
Curt. (%) 

Time 
(s) 

0 368,892 - 368,892 - 2.84 
25 210,441 566 211,007 0.00 2.45 
50 111,651 762 112,413 0.00 2.31 
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RTSO, it takes about 2.5 seconds only. 
Detailed generation amount of each type of conventional 

generation, as well as the wind generation and curtailment, 
for 50% wind penetration, are illustrated in Fig. 7. In the 
selected case study, wind generation is significant 
throughout the day, therefore, wind curtailments occur to 
ensure the power system has enough flexibility from 
conventional generation ramping and reserve to cope with 
the net demand ramp (NDR). Furthermore, Fig. 8 depicts 
the generation mix of the RTSO, for 50% wind penetration. 
Due to the inclusion of energy storage to provide extra 
flexibility to the power system, wind curtailment did not 
occur. Essentially, the total conventional generation from 

nuclear, hydro and coal generation should match the actual 
net demand curve as shown in Fig. 6. However, the curve 
in Fig. 8 shows some distortion and peaks. These are 
actually the effects of energy charging or discharging of 
energy storage, as clearly illustrated in Fig. 9. 

Fig. 9 also includes energy storage percentage level 
across the 24-hours simulation. The dotted line shows the 
cone shape constraint implemented. It shows that energy 
storage size may be reduced, while it is still able to provide 
enough flexibility. Nonetheless, sizing of the energy 
storage is beyond the scope of this paper, and will be 
discussed in a future publication. 

 
 

6. Conclusions 
 
A new tool, called SDMS, is introduced in this paper, to 

schedule generators in a grid system, with high proportions 
of wind generation, in multiple timescales. The flexibility 
representation of conventional generation is pinned down 
to a nonlinear chance constraint inculcated in SDMS’s 
DASO or day-ahead formulation. The chance constraint is 
linearized to maintain the computational tractability of the 
proposed DASO component of the SDMS model. RTSO or 
the SDMS’S component of the real-time rolling scheduling 
includes energy storage to provide another level of 
flexibility to balance out the deviations caused by net 
demand prediction error. RTSO also utilizes the day-ahead 
stochastic results, to further reduce the search space and the 
computational requirements of the proposed SDMS 
framework. Results show the robustness of the proposed 
framework in managing the generation scheduling, despite 
the high intermittency of wind generation. It also managed 
to reduce wind curtailment and compensate for large wind 
prediction errors, with the extra flexibility acquired from 
the energy storage. 
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