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A smart grid is a modernized electrical grid that uses 
information about the behaviors of suppliers and 
consumers in an automated fashion to improve the 
efficiency, reliability, economics, and sustainability of the 
production and distribution of electricity. In the operation 
of a smart grid, demand side management (DSM) plays 
an important role in allowing customers to make informed 
decisions regarding their energy consumption. In addition, 
it helps energy providers reduce peak load demand and 
reshapes the load profile. In this paper, we propose a new 
DSM scheduling scheme that makes use of the day-ahead 
pricing strategy. Based on the Rubinstein–Stahl 
bargaining model, our pricing strategy allows consumers 
to make informed decisions regarding their power 
consumption, while reducing the peak-to-average ratio. 
With a simulation study, it is demonstrated that the 
proposed scheme can increase the sustainability of a smart 
grid and reduce overall operational costs. 
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I. Introduction 

According to the U.S. Department of Energy report, the 
demand and consumption for electricity in the U.S. have 
increased by 2.5% annually over the last 20 years [1].  

In a traditional electrical power grid, the flow of information 
between provider and consumer is usually unidirectional; that 
is, the provider controls the flow of information. To overcome 
this limitation, smart grid (SG) technology is expected to 
revolutionize the way that electric energy is produced and 
distributed through the power grid [2]. In SG infrastructures, a 
new technique alled demand side management (DSM) was 
introduced to ensure a more efficient use of any available 
energy. DSM is a scheduling function designed to control 
levels of consumer energy consumption. It allows consumers 
to make informed decisions regarding their energy 
consumption, and it helps the power providers reduce the peak-
to-average ratio (PAR) of energy consumption. Therefore, an 
SG system adaptively reshapes the consumer power demand 
profile [2]–[4]. If we wish to implement DSM in an SG, then 
we should consider the important role that day-ahead pricing 
plays, since any such pricing strategy can greatly influence 
consumers power consumption patterns [5]. Moreover, most 
existing price-strategy approaches for SGs in the current 
literature are not suitable to be practically implemented in real-
world operations.  

Nowadays, game theory has become a powerful tool to 
analyze and improve the performance of mathematically based 
protocols. Therefore, game theory is a suitable tool for the 
study of how a power supplier may interact with its consumers 
and how, in turn, they may cooperate with each other in an SG. 
As such a study is an example of a cooperative game, the 
Rubinstein–Stahl bargaining model can be used to develop   
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a suitable incentive mechanism, which is needed for the 
cooperation of consumers and suppliers [5]–[7].  

In this paper, we propose a new price-based DSM scheme 
that is centered on the Rubinstein–Stahl bargaining model. By 
adopting a two-sided dynamic pricing strategy, a power 
supplier and its consumers iteratively change their respective 
current strategies (power load profile) and repeatedly interact 
with other. For example, a power supplier can encourage its 
consumers to schedule their power consumption profile in 
accordance with its pricing policy. For consumers to minimize 
their respective electricity bills, they should adaptively respond 
to the energy prices set by their supplier [8]. The dynamics of 
such an interactive feedback mechanism means that there is the 
potential for a cascade of interactions between supplier and 
consumers to quickly find the most profitable price. In light of 
this fact, an important feature of the proposed scheme is that it 
adopts a bargaining-based cooperative pricing approach, which 
is implemented using the players’ patience factors.  

Some researchers considered the use of the Stackelberg 
game model in the management of an SG. In this model, the 
electricity retailer, as the Stackelberg leader, makes decisions 
on which electricity sources to procure electricity from, how 
much electricity to procure, and the optimal retail price to offer 
to its customers, to maximize its profit [9]. The customers, who 
are the followers in the Stackelberg game, adjust their 
individual electricity demand to maximize their individual 
utility. Even though the Stackelberg game model can capture 
the sequential dependence of the decisions, there are some 
disadvantages. First, competition among retailers cannot be 
added. Second, situations where only partial information on 
customers’ utility and preferences is obtained, were not 
considered. In this situation, the system needs to be modeled as 
a dynamic game with incomplete information. Third, the 
traditional Stackelberg game should be elaborated by using 
more adaptable economic models, such as screening and 
signaling models [9]. 

Recently, several SG management schemes, such as day-
ahead pricing with scheduling flexibility (DPSF) [5] and game-
theoretic energy consumption scheduling (GECS) [4], have 
been presented for SG systems. All the earlier work in such 
schemes has attracted a lot of attention, and the authors of these 
works introduced unique challenges in their attempts to 
efficiently solve the problem of DSM in SGs. Compared to the 
aforementioned schemes, the proposed scheme attains better 
performance. 

II. Proposed Dynamic Control Algorithms for SG 
Management  

In this section, the proposed scheme is explained in detail. 

We present a generalized day-ahead DSM strategy for future 
SGs. The main objective of our scheme is to maximize 
economic benefit by reducing the peak load demand. 

1. Basic Model for SG System 

In this work, we assume that the SG system provides power 

to a set of power consumers. We denote this set as ,  such 

that  ={1, … , N}, where N is the maximum number of 

power consumers. Each consumer is equipped with a smart 

meter, which can automatically schedule the energy 

consumption. The smart meters are all connected to the power 

line coming from the power provider. Suppose there are T 

periods in a day; for example, T = 24. Then, without loss of 

generality, time granularity is one hour. For each consumer 

( ),n n  is defined as the set of consumer n’s appliances. 

Thus, for any given appliance a, we have .na  In addition, 

,
t
n av  is appliance a’s power consumption at time t, which can 

be scheduled. Therefore, a power consumption–scheduling 

vector of appliance a can be denoted by vn,a = 
1 2

, , ,[ , , , ],T
n a n a n av v v  and t
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where max
nq  and min

nq  are the maximum and minimum 

power consumptions of consumer n; that is, we assume for 
min
nq  that all appliances belonging to consumer n are in system 

standby mode, and vice versa for max .nq  The daily power load 

for consumer n is denoted by 1 2, , , ,T
n n n nq q q   q  and 

the sum of the total load of customers at any given time t can 

be calculated as 

1
.

Nt t
nn

Q q
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The main goal of the power supplier is to reduce the PAR by 
shifting the power consumption from peak periods to off-peak 
periods. From the consumer’s point of view, the price of the 
power is the main interest; the higher the PAR, the higher the 
power price. Therefore, reducing the PAR is the major 
objective for consumers. Considering the requirements of both 
sides, our scheduling scheme is designed to minimize the PAR. 
Traditionally, the PAR is given by 

1 0

max ( )
PAR .

1
( )

t
t nn N

N T t
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q

q
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Based on the set of power consumption–scheduling vectors 

,1 ,( , , ),n n av v nV denotes customer n’s total energy 

consumption–scheduling vector ,1 ,2 ,, , ,[ ]),n n n n av v v V  
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for all appliances, where 1 2
,1 ,1 ,1 ,1[ , ], ., T

n n n nv v vv  Finally, 

the proposed scheme can be characterized by the following 
problem: 

min max ( ).t
t nn N

q Vn                 (4) 

In an SG system, there are two main prices to consider: the 

consumer’s expecting price, d ,tp  and the supplier’s expecting 

price, s .tp  The consumer’s expected price d( )tp  can be 

adjusted according to the shifting load ratio. In our scheduling 

model, t
nx  is defined as the shifted total power load, which is 

the variation within the time period t. Therefore, within the 

time period t, the power load decreases. By considering the 

shifting load ratio,  
d, / tt t

n n nx q p  can be defined as follows: 

 
d 0 0

1

1

1 s.t. ,

N t
t

nnt t tn
n t N t

n nn

qx
p p p

q q







        
   




     (5) 

where 0tp  is the initial retail price obtained by the general law 

of supply and demand; it is decided to be proportional to the 

supplier’s generation cost [1]. The variable   is a control 
parameter for the cost function. For energy efficiency, t

nq  is 

preferred to have the same value as the average power load 

(Qavg) in the time period t. Therefore, the supplier’s expecting 
price s( )tp  increases when t

nq  and Qavg become estranged 

from each other. Based on this assumption, the supplier’s 

expecting price s( )tp  can be defined as follows: 

s 0
avg1 1 1
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In our model, the retail price (pt) for time t is determined as the 
weighted sum of stp  and d .tp  

d(1 ) ,st ttp p p                  (7) 

where ω is a weighted factor in the prices of both sides. In the 
proposed scheme, the basic concept of the Rubinstein–Stahl 
bargaining method is adopted to adjust the  value.  

2. Rubinstein–Stahl Bargaining Model 

In 1982, the Rubinstein–Stahl bargaining model was 
proposed as a solution to problems involving two players who 
are bargaining over the division of a given benefit [10]. Players 
negotiate with each other by alternately proposing counter 
offers. After several rounds of offers and counter offers, players 
finally come to an agreement. In the Rubinstein–Stahl 
bargaining model, there exists a unique solution for this kind of 
bargaining process [9]. We assume that the Rubinstein–Stahl 
bargaining model’s equilibrium point is obtained according to 

the supplier’s offer *
s( )x  and consumer’s offer *

d( ).x  A 
supplier, in making an offer *

s( ),x  realizes that consumers 
could reject it, and a consumer may then make a counter offer 

*
d( )x  in the next time period. If both supplier and consumer 

follow their equilibrium offers, then their offers would be 
accepted. Therefore, we can model how a consumer’s rejection 
would decrease a supplier’s payoff by the following equation: 

* *
s d d1 .x x                   (8) 

A supplier can entice a consumer into accepting their offer 
by making it generous enough so as to give the consumer an 
amount that is equal or similar to their expecting payoff. In a 
manner similar to the above, a consumer can come to realize 
that their supplier may reject their counter offer, and their 
supplier may make a counter offer *

s( )x  in the next period. 
Thus, similarly, we can model how a supplier’s rejection would 
decrease a consumer’s payoff by the following equation: 

* *
d s s .1 x x                    (9) 

Solving these two equations, we obtain the following: 
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Finally, we can find out the equilibrium point according to (10). 
Based on the concept of equilibrium, this final agreement in the 
Rubinstein–Stahl model can be expressed as follows: 
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Let d  
and s  

be the respective consumer and supplier 
patience factors. The more patience one has, the more payoff 
one attains. By this, we mean that if consumers know the 
current price of electricity at the earliest possible moment, then 
they may make use of their time and resources to plan an 
effective power consumption schedule for themselves; thus, 
with this knowledge in hand, they would then be able to 
exercise a certain level of patience to obtain the most profitable 
price. However, in this context, it is usually the supplier that has 
the greater level of patience. Consequently, we can represent 
the consumer’s patience as a monotonic time decreasing 
function [9] as follows: 

d
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where  is the patience coefficient, and r represents the rth 
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round of the bargaining process. According to the market-
based economic model, the payoff of the power supplier is 
related to the payments of consumers. In this context, the 
longer the bargaining process goes on, the less opportunities 
there are for consumers to take control of their power demand; 
thus, they end up paying more. Based on this consideration, we 
adopt the following equation for the supplier’s patience [9]: 

s
s

s d

d ( )
( ) s.t. 0,

d

(0) 0, and ( ) 1,

r r

r r

re e
r

re e
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 




 






 


  

        (13) 

In (12) and (13), the patience coefficient (r) affects the 
patience factor of both sides. For an ideal management of SG, 
the average energy demand (Qavg) and the total energy demand 
are expected to be identical. To reach this ideal situation, we 
dynamically adjust the value of . In this work, r can be 
defined as follows: 
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By altering the value of ,r  consumers can be encouraged to 

schedule their current power consumption to approximate the 

Qavg. Therefore, we can obtain the weighted factor in equation 

(7) in terms of (12) as follows: 

 d sd

s d s d

11
 and (1 ) .
1 1
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 
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Finally, we can get the retail price vector 

( 1 2[ , , ... , ]tp p p ) in accordance with equations (7) and 

(15). When the price pt is received from the power supplier, 

each consumer can then estimate their own payoff (Ui(vn)). 

The consumers aim to maximize their individual payoffs.   

 
1

max max( ), s.t. .
n n

T t t
i n nt

U p q i N

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v v

v     (16) 

Each consumer individually solves the above optimization 
problem in a distributed manner, and the solution (vn) is 
obtained. Then, vn becomes the input value in the power 
supplier’s optimization problem. To achieve a better profit than 
before, the power supplier determines how to adjust the price 
vector while examining the payoff periodically. In Fig. 1, the 
main steps of the proposed scheme are shown and are 
explained in more detail in the following: 
■ Step 1. At the initial stage, each consumer’s smart meter 

calculates an initial consumption vector, and the supplier 
then calculates initial price  . 

■ Step 2. The supplier broadcasts   to all consumers, and 
all consumers can then obtain the initial   from their 
power supplier. 

 

Fig. 1. Flow chart of algorithm. 
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■ Step 3. Consumers report their respective consumption 

vectors, which are revised by their smart meters, and 
prices dtp  to their respective power supplier. The power 
supplier is then able to obtain s d, , andt tp p   by using 
(7) and (15). Then, the power supplier calculates  . 

■ Step 4. Consumers compare their old consumption 
vector’s payoff with their new consumption vector’s 
payoff. If the new consumption vector’s payoff is better, 
then go to the next step. Otherwise, go back to step 3.  

■ Step 5. If the PAR is lower than ,  then the algorithm 
terminates. Otherwise, go back to step 2.  

Figure 1 shows the proposed interactive feedback process. This 
interactive feedback process continues until system 
convergence is obtained.  

III. Performance Evaluation 

In this section, the effectiveness of the proposed scheme is 
validated through simulation. To emulate a real-world SG 
environment and for a fair comparison, we consider the system 
parameters and power consumption as outlined in Table 1 and 
Table 2, respectively. Using a simulation model, the 
performance of the proposed scheme is compared with the two 
existing SG management schemes; the DPSF scheme [5] and 
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Table 1. System parameters. 

Parameter Value 

Number of consumer (N) 10 

Number of consumer n’s appliance ( n ) 40 

Number of shiftable appliance (Max) 15 

Number of shiftable appliance (Min)  5 

Number of non-shiftable appliance (Max) 35 

Number of non-shiftable appliance (Min) 25 

Maximum power consumption for each consumer ( max
nq ) 10.5 kWh

Minimum power consumption for each consumer ( min
nq ) 0 kWh

  value  = 2 

T value T = 48 

Threshold value of convergence  = 1.5

 

Table 2. Power consumption. 

Time (hour) 1 2 3 4 5 6 

Consumption (kW/h) 376 210 98 189 189 189

Time (hour) 7 8 9 10 11 12 

Consumption (kW/h) 309 376 330 309 309 995

Time (hour) 13 14 15 16 17 18 

Consumption (kW/h) 376 538 520 538 651 816

Time (hour) 19 20 21 22 23 24 

Consumption (kW/h) 1,321 1,321 995 1,138 651 376

Time (hour) 25 26 27 28 29 30 

Consumption (kW/h) 376 210 98 189 189 189

Time (hour) 31 32 33 34 35 36 

Consumption (kW/h) 309 376 330 309 309 995

Time (hour) 37 38 39 40 41 42 

Consumption (kW/h) 376 538 520 538 651 816

Time (hour) 43 44 45 46 47 48 

Consumption (kW/h) 1,321 1,321 995 1,138 651 376

 

 
the GECS scheme [4]. 

The performance of the SG usually depends on the power 
consumption, power cost, and payment that is paid by all 
consumers. In this paper, the performance measures obtained 
through simulation are the consumer’s power consumption and 
the normalized payment. 

In Fig. 2, the consumers’ power demand profiles are 
compared over 48 time periods. From the simulation results, 
we can see that the consumers’ demand profiles under the 
proposed scheme have a flatter power consumption than those 
under the other existing schemes. At the same time, our  

Fig. 2. Power consumption. 
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Fig. 3. Aggregate price comparison. 

1 6 11 16 21 26 31 36 41 46

2.5

2.0

1.5

1.0

0.5

0

A
gg

re
ga

te
 p

ay
m

en
t 

Proposed scheme DPSF GECS 

Time (hours) 

 
 

 

Fig. 4. Aggregate payment comparison. 
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proposed scheme can reduce the peak demand further than the 
other schemes by using a dynamic scheduling technique.  

Figure 3 shows the aggregate price comparison for the  
three schemes. In this work, the “aggregate price” is the 
multiplication of power consumption demand and price rate. 
These performance criteria represent consumers’ profits; our 
scheme can be obtained by effective power consumption 
scheduling. We can see that the consumers’ payments in the 
proposed scheme are less than those in the other existing 
schemes. 

Figure 4 shows the hourly aggregate payment required of all 
consumers. Usually, a lower PAR value means that suppliers 
can reduce their costs. From a supplier’s point of view, our 
scheme can effectively decrease PAR, which is a critical factor 
in deciding the cost of power. Therefore, in the proposed 
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scheme, consumers tend to have a significantly lower hourly 
aggregate payment than in other schemes, which in the end, is 
of more benefit to the supplier. Therefore, we claim that our 
proposed approach can improve the efficiency of an SG system. 
From the simulation results in Figs. 2–4, it can be seen that the 
proposed scheme, in general, performs better than the existing 
schemes. Based on an adaptive, interactive learning approach, 
the proposed scheme can constantly monitor SG conditions 
and appropriately balance the system performance, whereas the 
other schemes ([4] and [5]) cannot offer such an attractive 
system performance. 

IV. Summary and Conclusion 

Recently, the design of effective SG management algorithms 
has been the subject of intense research. In particular, the day-
ahead pricing DSM approach is widely used to dynamically 
change or shift the electricity consumption of consumers. In 
this paper, we proposed a new two-sided pricing algorithm for 
future SG systems. For practical SG operations, the proposed 
game-based algorithms are designed in a self-organizing, 
dynamically interactive and distributed fashion. The dynamics 
of our interactive feedback game model can cause a cascade of 
interactions between supplier and consumers to effectively find 
the most profitable price for both parties. Unlike other existing 
SG control schemes that require the exchanges of messages 
between consumers, the proposed pricing scheme requires only 
interactions between a power supplier and its consumers via 
pricing information. This distributed simple approach is highly 
desirable for real-world system operations. Simulation results 
confirmed that our scheme can provide better benefits, not only 
for the energy provider but also for the consumers. For future 
study, we will consider the SG security issue (that is, the effect 
of malicious consumers).  
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