• Title/Summary/Keyword: Data Mining Process

Search Result 680, Processing Time 0.024 seconds

Decision process for right association rule generation (올바른 연관성 규칙 생성을 위한 의사결정과정의 제안)

  • Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.2
    • /
    • pp.263-270
    • /
    • 2010
  • Data mining is the process of sorting through large amounts of data and picking out useful information. An important goal of data mining is to discover, define and determine the relationship between several variables. Association rule mining is an important research topic in data mining. An association rule technique finds the relation among each items in massive volume database. Association rule technique consists of two steps: finding frequent itemsets and then extracting interesting rules from the frequent itemsets. Some interestingness measures have been developed in association rule mining. Interestingness measures are useful in that it shows the causes for pruning uninteresting rules statistically or logically. This paper explores some problems for two interestingness measures, confidence and net confidence, and then propose a decision process for right association rule generation using these interestingness measures.

A Six Sigma Methodology Using Data Mining : A Case Study of "P" Steel Manufacturing Company (데이터 마이닝 기반의 6 시그마 방법론 : 철강산업 적용사례)

  • Jang, Gil-Sang
    • The Journal of Information Systems
    • /
    • v.20 no.3
    • /
    • pp.1-24
    • /
    • 2011
  • Recently, six sigma has been widely adopted in a variety of industries as a disciplined, data-driven problem solving approach or methodology supported by a handful of powerful statistical tools in order to reduce variation through continuous process improvement. Also, data mining has been widely used to discover unknown knowledge from a large volume of data using various modeling techniques such as neural network, decision tree, regression analysis, etc. This paper proposes a six sigma methodology based on data mining for effectively and efficiently processing massive data in driving six sigma projects. The proposed methodology is applied in the hot stove system which is a major energy-consuming process in a "P" steel company for improvement of heat efficiency through reduction of energy consumption. The results show optimal operation conditions and reduction of the hot stove energy cost by 15%.

Research on Data Acquisition Strategy and Its Application in Web Usage Mining (웹 사용 마이닝에서의 데이터 수집 전략과 그 응용에 관한 연구)

  • Ran, Cong-Lin;Joung, Suck-Tae
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.3
    • /
    • pp.231-241
    • /
    • 2019
  • Web Usage Mining (WUM) is one part of Web mining and also the application of data mining technique. Web mining technology is used to identify and analyze user's access patterns by using web server log data generated by web users when users access web site. So first of all, it is important that the data should be acquired in a reasonable way before applying data mining techniques to discover user access patterns from web log. The main task of data acquisition is to efficiently obtain users' detailed click behavior in the process of users' visiting Web site. This paper mainly focuses on data acquisition stage before the first stage of web usage mining data process with activities like data acquisition strategy and field extraction algorithm. Field extraction algorithm performs the process of separating fields from the single line of the log files, and they are also well used in practical application for a large amount of user data.

Analysis and Improvement of Stocking and Releasing Processes in Logistics Warehouse Using Process Mining Approach (Process Mining 기법을 이용한 물류센터 입출고 프로세스 분석 및 개선 방안 수립)

  • Kim, Hyun-Kyoung;Shin, KwangSup
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.39 no.4
    • /
    • pp.1-17
    • /
    • 2014
  • The functions of stocking and releasing in logistics center consist of three major procedure such as receiving, shipping and stock managements. Each process includes various sub-processes which are complicatedly connected with each other. Furthermore, lots of operators execute various tasks in the different sub-processes, simultaneously. It makes difficult to standardize, monitor, and analyze the processes. This paper proposed the quantitative methodology using process mining approach to discover and analyze receiving and shipping processes. For this purpose, the PDA operation log data is analyzed to build a realistic process model. The deduced model has been compared with official process model. In addition, task assignment and social networks analysises are carried out by utilizing process mining tools. Also, it has been proposed how to improve the processes with the analytical simulation model based on the results of process mining.

Data mining and Copyright

  • Kim, Kyungsuk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.11-19
    • /
    • 2022
  • Data mining has broad applications that reach beyond scholarly and scientific research and provide internet search engine services that are commonly used forms of Text and Data Mining('TDM') of websites. The exceptions and limitations for data mining provide a competitive advantage in the global race for policy innovation because it permits researchers to conduct computational analysis - TDM on any materials to which they have access. For this purpose, Japan and the EU added limitations on copyright to legalize some TDM research through amendments to copyright law, and the U.S. copyright law has allowed data mining by the fair use provision. On the other hand, there are no explicit exceptions and limitations for data mining under the Korean Copyright Act, and there are no cases considering data mining fair use. We review comparatively exceptions and limitations on copyright which will help to encourage AI-related business by using more data smoothly through the mining process and extracting more valuable information.

Workflow Process-Aware Data Cubes and Analysis (워크플로우 프로세스 기반 데이터 큐브 및 분석)

  • Jin, Min-hyuck;Kim, Kwang-hoon Pio
    • Journal of Internet Computing and Services
    • /
    • v.19 no.6
    • /
    • pp.83-89
    • /
    • 2018
  • In workflow process intelligence and systems, workflow process mining and analysis issues are becoming increasingly important. In order to improve the quality of workflow process intelligence, it is essential for an efficient and effective data center storing workflow enactment event logs to be provisioned in carrying out the workflow process mining and analytics. In this paper, we propose a three-dimensional process-aware datacube for organizing workflow enterprise data centers to efficiently as well as effectively store the workflow process enactment event logs in the XES format. As a validation step, we carry out an experimental process mining to show how much perfectly the process-aware datacubes are suitable for discovering workflow process patterns and its analytical knowledge, like enacted proportions and enacted work transferences, from the workflow process enactment event histories. Finally, we confirmed that it is feasible to discover the fundamental control-flow patterns of workflow processes through the implemented workflow process mining system based on the process-aware data cube.

Tabu Search-Genetic Process Mining Algorithm for Discovering Stochastic Process Tree (확률적 프로세스 트리 생성을 위한 타부 검색 -유전자 프로세스 마이닝 알고리즘)

  • Joo, Woo-Min;Choi, Jin Young
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.4
    • /
    • pp.183-193
    • /
    • 2019
  • Process mining is an analytical technique aimed at obtaining useful information about a process by extracting a process model from events log. However, most existing process models are deterministic because they do not include stochastic elements such as the occurrence probabilities or execution times of activities. Therefore, available information is limited, resulting in the limitations on analyzing and understanding the process. Furthermore, it is also important to develop an efficient methodology to discover the process model. Although genetic process mining algorithm is one of the methods that can handle data with noises, it has a limitation of large computation time when it is applied to data with large capacity. To resolve these issues, in this paper, we define a stochastic process tree and propose a tabu search-genetic process mining (TS-GPM) algorithm for a stochastic process tree. Specifically, we define a two-dimensional array as a chromosome to represent a stochastic process tree, fitness function, a procedure for generating stochastic process tree and a model trace as a string of activities generated from the process tree. Furthermore, by storing and comparing model traces with low fitness values in the tabu list, we can prevent duplicated searches for process trees with low fitness value being performed. In order to verify the performance of the proposed algorithm, we performed a numerical experiment by using two kinds of event log data used in the previous research. The results showed that the suggested TS-GPM algorithm outperformed the GPM algorithm in terms of fitness and computation time.

Learning process mining techniques based on open education platforms (개방형 e-Learning 플랫폼 기반 학습 프로세스 마이닝 기술)

  • Kim, Hyun-ah
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.2
    • /
    • pp.375-380
    • /
    • 2019
  • In this paper, we study learning process mining and analytic technology based on open education platform. A study on mining through personal learning history log data based on an open education platform such as MOOC which is growing in interest recently. This technology is to design and implement a learning process mining framework for discovering and analyzing meaningful learning processes and knowledge from learning history log data. Learning process mining framework technology is a technique for expressing, extracting, analyzing and visualizing the learning process to provide learners with improved learning processes and educational services.

Curriculum Mining Analysis Using Clustering-Based Process Mining (군집화 기반 프로세스 마이닝을 이용한 커리큘럼 마이닝 분석)

  • Joo, Woo-Min;Choi, Jin Young
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.4
    • /
    • pp.45-55
    • /
    • 2015
  • In this paper, we consider curriculum mining as an application of process mining in the domain of education. The basic objective of the curriculum mining is to construct a registration pattern model by using logs of registration data. However, subject registration patterns of students are very unstructured and complicated, called a spaghetti model, because it has a lot of different cases and high diversity of behaviors. In general, it is typically difficult to develop and analyze registration patterns. In the literature, there was an effort to handle this issue by using clustering based on the features of students and behaviors. However, it is not easy to obtain them in general since they are private and qualitative. Therefore, in this paper, we propose a new framework of curriculum mining applying K-means clustering based on subject attributes to solve the problems caused by unstructured process model obtained. Specifically, we divide subject's attribute data into two parts : categorical and numerical data. Categorical attribute has subject name, class classification, and research field, while numerical attribute has ABEEK goal and semester information. In case of categorical attribute, we suggest a method to quantify them by using binarization. The number of clusters used for K-means clustering, we applied Elbow method using R-squared value representing the variance ratio that can be explained by the number of clusters. The performance of the suggested method was verified by using a log of student registration data from an 'A university' in terms of the simplicity and fitness, which are the typical performance measure of obtained process model in process mining.

Analysis of Business Process in the SCM Sector Using Data Mining (데이터마이닝을 활용한 SCM 부문에서의 비즈니스 프로세스 분석)

  • Lee, Sang-Young;Lee, Yun-Suk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.6 s.44
    • /
    • pp.59-67
    • /
    • 2006
  • If apply BPM that is a business process management tool to SCM sector, efficient process management and control are available. Also, BPM can execute integrating process that compose SCM effectively. These access method does to manage progress process of SCM process more efficiently and do monitoring. Also, It is can be establish plan about improvement of process analyzing process achievement result. Thus, in this paper, introduce this BPM into SCM environment. Also, SCM process presents plan that executes integration and improves business process effectively applying data mining technique.

  • PDF