• 제목/요약/키워드: Damping devices

검색결과 234건 처리시간 0.02초

Numerical verification of a dual system's seismic response

  • Phocas, Marios C.;Sophocleous, Tonia
    • Earthquakes and Structures
    • /
    • 제3권5호
    • /
    • pp.749-766
    • /
    • 2012
  • Structural control through integration of passive damping devices within the building structure has been increasingly implemented internationally in the last years and has proven to be a most promising strategy for earthquake safety. In the present paper an alternative configuration of an innovative energy dissipation mechanism that consists of slender tension only bracing members with closed loop and a hysteretic damper is investigated in its dynamic behavior. The implementation of the adaptable dual control system, ADCS, in frame structures enables a dual function of the component members, leading to two practically uncoupled systems, i.e., the primary frame, responsible for the normal vertical and horizontal forces and the closed bracing-damper mechanism, for the earthquake forces and the necessary energy dissipation. Three representative international earthquake motions of differing frequency contents, duration and peak ground acceleration have been considered for the numerical verification of the effectiveness and properties of the SDOF systems with the proposed ADCS-configuration. The control mechanism may result in significant energy dissipation, when the geometrical and mechanical properties, i.e., stiffness and yield force of the integrated damper, are predefined. An optimum damper ratio, DR, defined as the ratio of the stiffness to the yield force of the hysteretic damper, is proposed to be used along with the stiffness factor of the damper's- to the primary frame's stiffness, in order for the control mechanism to achieve high energy dissipation and at the same time to prevent any increase of the system's maximum base shear and relative displacements. The results are summarized in a preliminary design methodology for ADCS.

Dynamic Behavior of Liquid Propellant in Reusable Rocket Vehicle

  • Himeno, Takehiro;Nonaka, Satoshi;Naruo, Yoshihiro;Inatani, Yoshifumi;Watanabe, Toshinori
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.687-692
    • /
    • 2004
  • For the prediction of sloshing in the propellant tank of rocket vehicle utilized in RVT (reusable rocket vehicle testing) conducted by ISAS/JAXA, the flow field in the propellant tank during the ballistic flight was experimentally reproduced with the sub-scale model of it. The lateral acceleration as large as about 0.8 G was provided with a mechanical exciter and the deformation of liquid surface in the vessel was visualized with a high-speed camera. The several con-figurations of damping devices were installed and tested in the vessel, which should keep the ullage gas away from the outlet port. It was consequently suggested that the combination of a baffle plate and a perforated cylinder could be effective against the gas suction before the re-ignition of the engine. The sloshing phenomena were also simulated with the CFD code, called CIP-LSM. The numerical results showed good agreement with the corresponding data obtained in the experiment.

  • PDF

Active mass damper control for cable stayed bridge under construction: an experimental study

  • Chen, Hao;Sun, Zhi;Sun, Limin
    • Structural Engineering and Mechanics
    • /
    • 제38권2호
    • /
    • pp.141-156
    • /
    • 2011
  • A cable stayed bridge under construction has low structural damping and is not as stable as the completed bridge. Control countermeasures, such as the installation of energy dissipating devices, are thus required. In this study, the general procedure and key issues on adopting an active control device, the active mass damper (AMD), for vibration control of cable stayed bridges under construction were studied. Taking a typical cable stayed bridge as the prototype structure; a lab-scale test structure was designed and fabricated firstly. A baseline FEM model was then setup and updated according to the modal parameters measured from vibration test on the structure. A numerical study to simulate the bridge-AMD control system was conducted and an efficient LQG-based controller was designed. Based on that, an experimental implementation of AMD control of the transverse vibration of the bridge model was performed. The results from numerical simulation and experimental study verified that the AMD-based active control was feasible and efficient for reducing dynamic responses of a complex structural system. Moreover, the discussion made in this study clarified some critical problems which should be addressed for the practical implementation of AMD control on real cable-stayed bridges.

탄성에폭시 블렌드 시스템의 열적 특성 및 내충격성에 관한 연구 (Study on the Thermal Properties and High Impact of Elastic Epoxy Blend System)

  • 이경용;이관우;민지영;최용성;박대희
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제53권4호
    • /
    • pp.192-199
    • /
    • 2004
  • Elastic-factor of elastic epoxy were investigated by TMA (Thermomechanical Analysis), DMTA (Dynamic Mechanical Thermal Analysis), TGA (Thermogravimetric Analysis) and FESEM (Field Emission Scanning Electron Microscope) for structure-images analysis as toughness-investigation to improve brittleness of existing epoxy resin. A range of measurement temperature of the TMA and DMTA was changed from -20($^{\circ}C$) to $200^{\circ}(C)$, and TGA was changed from $0^{\circ}(C)$ to $600^{\circ}(C)$. Glass transition temperature (Tg) of elastic epoxy was measured through thermal analysis devices with the content of 0(phr), 20(phr) and 35(phr). Also, thermal expansion coefficient (a), high temperature, modulus and loss factor were investigated through TMA, TGA, and DMTA. In addition, the structure of specimens was analyzed through FESEM, and then elastic-factor of elastic epoxy was visually showed by FESEM. As thermal analysis results, 20(phr) was more excellent than 30(phr) thermally and mechanically. Specially, thermal expansion coefficient, high temperature, modulus, and damping properties were excellent. By structure-images analysis through FESEM, we found elastic-factor of elastic epoxy that is not existing epoxy, and proved high impact.

공압제진대용 이중챔버형 공압스프링의 복소강성 모형화 (Amplitude-dependent Complex Stiffness Modeling of Dual-chamber Pneumatic Spring for Pneumatic Vibration Isolation Table)

  • 이정훈;김광준
    • 한국소음진동공학회논문집
    • /
    • 제18권1호
    • /
    • pp.110-122
    • /
    • 2008
  • Pneumatic vibration isolator typically consisting of dual-chamber pneumatic springs and a rigid table are widely employed for proper operation of precision instruments such as optical devices or nano-scale equipments owing to their low stiffness- and high damping-characteristics. As environmental vibration regulations for precision instruments become more stringent, it is required to improve further the isolation performance. In order to facilitate their design optimization or active control, a more accurate mathematical model or complex stiffness is needed. Experimental results we obtained rigorously for a dual-chamber pneumatic spring exhibit significantly amplitude dependent behavior, which cannot be described by linear models in earlier researches. In this paper, an improvement for the complex stiffness model is presented by taking two major considerations. One is to consider the amplitude dependent complex stiffness of diaphragm necessarily employed for prevention of air leakage. The other is to employ a nonlinear model for the air flow in capillary tube connecting the two pneumatic chambers. The proposed amplitude-dependent complex stiffness model which reflects dependency on both frequency and excitation amplitude is shown to be very valid by comparison with the experimental measurements. Such an accurate nonlinear model for the dual-chamber pneumatic springs would contribute to more effective design or control of vibration isolation systems.

Resonance Investigation and Active Damping Method for VSC-HVDC Transmission Systems under Unbalanced Faults

  • Tang, Xin;Zhan, Ruoshui;Xi, Yanhui;Xu, Xianyong
    • Journal of Power Electronics
    • /
    • 제19권6호
    • /
    • pp.1467-1476
    • /
    • 2019
  • Grid unbalanced faults can cause core saturation of power transformer and produce lower-order harmonics. These issues increase the electrical stress of power electronic devices and can cause a tripping of an entire HVDC system. In this paper, based on the positive-sequence and negative-sequence impedance model of a VSC-HVDC system as seen from the point of common connection (PCC), the resonance problem is analyzed and the factors determining the resonant frequency are obtained. Furthermore, to suppress over-voltage and over-current during resonance, a novel method using a virtual harmonic resistor is proposed. The virtual harmonic resistor emulates the role of a resistor connected in series with the commutating inductor without influencing the active and reactive power control. Simulation results in PSCAD/EMTDC show that the proposed control strategy can suppress resonant over-voltage and over-current. In addition, it can be seen that the proposed strategy improves the safety of the VSC-HVDC system under unbalanced faults.

항공기용 전원분배장치의 전원개폐에 의한 과도전압 특성 연구 (Study for Transient Voltage Characteristic by Power Switching on Aircraft Electrical Master Box)

  • 서영진;지상용;조지형
    • 항공우주시스템공학회지
    • /
    • 제13권5호
    • /
    • pp.24-31
    • /
    • 2019
  • 본 연구에서는 항공기용 전원분배장치에서 발생한 소손현상의 원인을 분석하고 개선 방안을 제안하였다. 항공기용 전원분배장치는 교류와 직류로 분류하며, 두 장비 사이에 정류기가 존재한다. 전원분배 장치의 전원이 켜지고 꺼질 때 전원 보드내의 커패시터가 소손되었다. 주요 원인은 정류기에 내장되어 있는 인덕턴스로 인해 과도한 전압이 발생했기 때문이다. 고장이 발생 할 수 있는 경우를 분류하였다. 그리고 그에 따른 영향성을 분석하였으며, 실험적인 방법을 통해서 해결책을 수립하였다.

유한요소해석을 이용한 곡면보 기반 진동체의 진동력 향상 방법 (Vibration Power Improvement Method of Curved Beam Based Actuator Using Finite Element Analysis)

  • 박재성;나승대;성기웅;김명남
    • 한국멀티미디어학회논문지
    • /
    • 제22권2호
    • /
    • pp.271-280
    • /
    • 2019
  • Recently, hearing loss patients have been increasing to excessive use of various multimedia devices. One of the hearing rehabilitation systems, bone conduction hearing aid can be used to conductive deafness patients efficiently. However, the conventional bone conduction hearing systems has some problems such as skin diseases, repulsion of patients, and vibration power reduction by skin damping. In this paper, to overcome the conventional problems, we proposed power improvement method by curved beam diaphragm. The proposed method is skin attachment system which is non-implantable, and then the power of transducer is improved by the proposed method. In order to improve the vibration power of diaphragm, variable that has correlation with displacement are extracted, the diaphragm designed by extracted variable. To verify efficient of the proposed method, experiment conducted by finite element analysis. As a result of, the proposed method confirmed improved power to compare with the conventional method and proposed method.

Wind vibration control of stay cables using an evolutionary algorithm

  • Chen, Tim;Huang, Yu-Ching;Xu, Zhao-Wang;Chen, J.C.Y.
    • Wind and Structures
    • /
    • 제32권1호
    • /
    • pp.71-80
    • /
    • 2021
  • In steel cable bridges, the use of magnetorheological (MR) dampers between butt cables is constantly increasing to dampen vibrations caused by rain and wind. The biggest problem in the actual applications of those devices is to launch a kind of appropriate algorithm that can effectively and efficiently suppress the perturbation of the tie through basic calculations and optimal solutions. This article discusses the optimal evolutionary design based on a linear and quadratic regulator (hereafter LQR) to lessen the perturbation of the bridges with cables. The control numerical algorithms are expected to effectively and efficiently decrease the possible risks of the structural response in amplification owing to the feedback force in the direction of the MR attenuator. In addition, these numerical algorithms approximate those optimal linear quadratic regulator control forces through the corresponding damping and stiffness, which significantly lessens the work of calculating the significant and optimal control forces. Therefore, it has been shown that it plays an important and significant role in the practical application design of semiactive MR control power systems. In the present proposed novel evolutionary parallel distributed compensator scheme, the vibrational control problem with a simulated demonstration is used to evaluate the numerical algorithmic performance and effectiveness. The results show that these semiactive MR control numerical algorithms which are present proposed in the present paper has better performance than the optimal and the passive control, which is almost reaching the levels of linear quadratic regulator controls with minimal feedback requirements.

Optimal design of a viscous inertial mass damper for a taut cable by the fixed-points method

  • Duan, Y.F.;Dong, S.H.;Xu, S.L.;Yun, C.B.
    • Smart Structures and Systems
    • /
    • 제30권1호
    • /
    • pp.89-106
    • /
    • 2022
  • The negative stiffness of an active or semi-active damper system has been proven to be very effective in reducing dynamic response. Therefore, energy dissipation devices possessing negative stiffness, such as viscous inertial mass dampers (VIMDs), have drawn much attention recently. The control performance of the VIMD for cable vibration mitigation has already been demonstrated by many researchers. In this paper, a new optimal design procedure for VIMD parameters for taut cable vibration control is presented based on the fixed-points method originally developed for tuned mass damper design. A model consisting of a taut cable and a VIMD installed near a cable end is studied. The frequency response function (FRF) of the cable under a sinusoidal load distributed proportionally to the mode shape is derived. Then, the fixed-points method is applied to the FRF curves. The performance of a VIMD with the optimal parameters is subsequently evaluated through simulations. A taut cable model with a tuned VIMD is established for several cases of external excitation. The performance of VIMDs using the proposed optimal parameters is compared with that in the literature. The results show that cable vibration can be significantly reduced using the proposed optimal VIMD with a relatively small amount of damping. Multiple VIMDs are applied effectively to reduce the cable vibration with multi-modal components.