• 제목/요약/키워드: Damping Matrix

검색결과 213건 처리시간 0.024초

FRF를 이용한 동적 구조 시스템의 구조추정 및 재해석 (Reanalysis for Correlating and Updating Dynamic Systems Using Frequency Response Functions)

  • 한경봉;박선규
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.49-56
    • /
    • 2004
  • Model updating is a very active research field, in which significant efforts has been invested in recent years. Model updating methodologies are invariably successful when used on noise-free simulated data, but tend to be unpredictable when presented with real experimental data that are-unavoidably-corrupted with uncorrected noise content. In this paper, Reanalysis using frequency response functions for correlating and updating dynamic systems is presented. A transformation matrix is obtained from the relationship between the complex and the normal frequency response functions of a structure. The transformation matrix is employed to calculate the modified damping matrix of the system. The modified mass and stiffness matrices are identified from the normal frequency response functions by using the least squares method. One simulated system is employed to illustrate the applicability of the proposed method. The result indicate that the damping matrix of correlated finite element model can be identified accurately by the proposed method. In addition, the robustness of the new approach uniformly distributed measurement noise Is also addressed.

  • PDF

주파수 응답함수를 이용한 구조 파라메터 예측 (Identification of Structural Parameters from Frequency Response Functions)

  • 김규식;강연준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.863-869
    • /
    • 2007
  • An improved method based on a normal frequency response function (FRF) is proposed to identify structural parameters such as mass, stiffness and damping matrices directly from the FRFs of a linear mechanical system. The method for estimating structural parameters directly from the measured FRFs of a structure is presented. This paper demonstrates that the characteristic matrices are extracted more accurately by using a weighted equation and eliminating the matrix inverse operation. The method is verified for a four degree-of-freedom lumped parameter system and an eight degree-of-freedom finite element beam. Experimental verification is also performed for a free-free steel beam whose size and physical properties are the same as those of the finite element beam. The results show that the structural parameters, especially the damping matrix, can be estimated more accurately by the proposed method.

  • PDF

자기상관유사행렬을 이용한 과도기적 신호의 분석 (Analysis of Transient Signal Using Autocorrelation-like Matrix)

  • 최규성;김영수
    • 한국통신학회논문지
    • /
    • 제23권7호
    • /
    • pp.1689-1698
    • /
    • 1998
  • 본 논문에서는 잡음환경하에서의 과도기형태 신호의 매개변수를 효율적으로 추정하기 위한 새로운 방법을 제안한다. 이 방법은 선형예측모델을 토대로 하여 확장된 차수를 갖는 자기상관유사행렬의 truncated singular value decomposition을 이용한다. 제안된 자기상관유사행렬의 우수성을 보여주기 위하여 감쇄계수가 같은 경우와 감쇄계수가 다른 경우에 대하여 각각 일반적인 데이터 행렬방법과 통계적 성능을 비교분석하였다. 시뮬레이션 결과 데이터 행렬 방법보다 자기상관유사행렬 방법의 통계적 성능이 보다 우수함을 알 수 있었다. 이러한 결과는 부가된 백색잡음의 자기상관지연값이 클 경우에 잡음의 영향이 어느정도 줄어든다는 성질로 부터 기인한다.

  • PDF

재해석 기법을 이용한 동적 구조시스템의 System Identification (System Identification of Dynamic Systems Using Structural Reanalysis Method)

  • 한경봉;박선규;김형열
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.421-424
    • /
    • 2004
  • Model updating is a very active research field, in which significant efforts has been invested in recent years. Model updating methodologies are invariably successful when used on noise-free simulated data, but tend to be unpredictable when presented with real experimental data that are-unavoidably-corrupted with uncorrelated noise content. In this paper, Reanalysis using frequency response functions for correlating and updating dynamic systems is presented. A transformation matrix is obtained from the relationship between the complex and the normal frequency response functions of a structure. The transformation matrix is employed to calculate the modified damping matrix of the system. The modified mass and stiffness matrices are identified from the normal frequency response functions by using the least squares method. Full scale pseudo dynamic pier test is employed to illustrate the applicability of the proposed method. The result indicate that the damping matrix of correlated finite element model can be identified accurately by the proposed method. In addition, the robustness of the new approach uniformly distributed measurement noise is also addressed.

  • PDF

Dynamic characteristics of hybrid tower of cable-stayed bridges

  • Abdel Raheem, Shehata E.
    • Steel and Composite Structures
    • /
    • 제17권6호
    • /
    • pp.803-824
    • /
    • 2014
  • The dynamic characterization is important in making accurate predictions of the seismic response of the hybrid structures dominated by different damping mechanisms. Different damping characteristics arise from the construction of the tower with different materials: steel for the upper part; reinforced concrete for the lower main part and interaction with supporting soil. The process of modeling damping matrices and experimental verification is challenging because damping cannot be determined via static tests as can mass and stiffness. The assumption of classical damping is not appropriate if the system to be analyzed consists of two or more parts with significantly different levels of damping, such as steel/concrete mixed structure - supporting soil coupled system. The dynamic response of structures is critically determined by the damping mechanisms, and its value is very important for the design and analysis of vibrating structures. An analytical approach capable of evaluating the equivalent modal damping ratio from structural components is desirable for improving seismic design. Two approaches are considered to define and investigate dynamic characteristics of hybrid tower of cable-stayed bridges: The first approach makes use of a simplified approximation of two lumped masses to investigate the structure irregularity effects including damping of different material, mass ratio, frequency ratio on dynamic characteristics and modal damping; the second approach employs a detailed numerical step-by step integration procedure in which the damping matrices of the upper and the lower substructures are modeled with the Rayleigh damping formulation.

감쇠를 포함한 유한요소 모형의 개선 (Updating of Finite Element Models Including Damping)

  • 이건명;주영호;박문수
    • 한국소음진동공학회논문집
    • /
    • 제22권12호
    • /
    • pp.1243-1249
    • /
    • 2012
  • 이 논문에서 유한요소 모형은 2단계로 개선된다. 첫 단계에서는 감쇠를 무시하고, 최적화 방법을 사용하여 유한요소 모형의 질량행렬과 강성행렬을 개선한다. 최적화를 위한 목적함수는 모드시험 데이터와 유한요소해석으로부터 구한 고유진동수와 진동형으로 이루어져 있다. 두 번째 단계에서는 첫 단계에서 구한 질량행렬과 강성행렬을 고정시키고, 감쇠를 고려한다. 먼저 비례감쇠를 가정하고 감쇠행렬을 추정한 다음, 해석적인 주파수응답함수와 측정한 주파수응답함수의 차가 최소가 되도록 최적화 과정을 이용하여 감쇠행렬을 조정한다. 이와 같은 모형개선 방법을 시뮬레이션 계와 실제 외팔보에 적용하였다.

공작기계 주축계의 진동특성해석에 관한 연구 (Dynamic Characteristics Analysis of a Machine-Tool Spindle System)

  • 김석일;곽병만;이후상;정재호
    • 한국정밀공학회지
    • /
    • 제8권2호
    • /
    • pp.57-68
    • /
    • 1991
  • In this study, to analyse the dynamic characteristics of a machine-tool spindle system, the spindle is mathematically represented by a Timoshenko beam including the internal damping of beam material, and each bearing by four bearing coefficients; stiffness and damping coefficients in moment and radial directions. And the dynamic compliance of the system is calculated by introducing the transfer matrix method, and the complex modal analysis method has been applied for the modal parameter identification. The influence of the bearing coefficients, material damping factor and bearing span on the dynamic characteristics of the system is parametrically examined.

  • PDF

유연한 기구의 틈새관절 모델링 및 해석방법에 관한 연구 (Dynamic Modeling and Analysis of Flexible Mechanism With Joint Clearance)

  • 홍지수;김호룡
    • 대한기계학회논문집
    • /
    • 제18권12호
    • /
    • pp.3109-3117
    • /
    • 1994
  • To operate a flexible mechanism in high speed its weight must be reduced as far as the structural strength does not decrease too much, but a light-weighted mechanism causes undesirable elastodynamic responses deteriorating the system performance. Besides, clearance within the connections of mechanisms causes rapid wear, increased noise and vibration. Even if the problems described above must be considered in the initial design stage, there has been no effective design process which takes account of the correlation between dynamic characteristics of flexible mechanism and the clearance effect at the joint. In this study, the generalized elastodynamic governing equations which include dynamic characteristics and boundary conditions of flexible mechanism are derived by variational calculus and solved by using FFM theory. To take the clearance effect at joint into account a new dynamic model is presented and also the method of modified stiffness/damping matrix is proposed to activate the dynamic clearance model, which cooperates with the developed governing equation very easily. As the results of this study, the proposed method(modified stiffness/damping matrix) to calculate clearance effect was proved to be superior to the existing one(force reaction method) in solution convergency and calculation performance. Besides this method can be easily adopted to the complex shape joint without calculation of reaction force direction.

Modelling and FEA-simulation of the anisotropic damping of thermoplastic composites

  • Klaerner, Matthias;Wuehrl, Mario;Kroll, Lothar;Marburg, Steffen
    • Advances in aircraft and spacecraft science
    • /
    • 제3권3호
    • /
    • pp.331-349
    • /
    • 2016
  • Stiff and light fibre reinforced composites as used in air- and space-craft applications tend to high sound emission. Therefore, the damping properties are essential for the entire structural and acoustic engineering. Viscous damping is an established and reasonably linear model of the dissipation behaviour. Commonly, it is assumed to be isotropic and constant over all modes. For anisotropic materials it depends on the fibre orientation as well as the elastic and thermal material properties. To portray the orthogonal anisotropic behaviour, a model for unidirectional fibre reinforced plastics (frp) has been developed based on the classical laminate theory by ADAMS and BACON starting in 1973. Their approach includes three damping coefficients - for longitudinal damping in fibre direction, damping transversal to the fibres and shear based dissipation. The damping of a laminate is then accumulated layer wise including the anisotropic stiffness. So far, the model has been applied mainly to thermoset matrix materials. In this study, an experimental parameter estimation for different thermoplastic frp with angle ply and cross ply layups was carried out by measuring free vibrations of cantilever beams. The results show potential and limits of the ADAMS/BACON damping criterion. In addition, a possibility of modelling the anisotropic damping is shown. The implementation in standard FEA software is used to study the influence of boundary conditions on the damping properties and numerically estimate the radiated sound power of thin-walled frp parts.