• Title/Summary/Keyword: Dam-Break

Search Result 150, Processing Time 0.023 seconds

Analysis of Dam Break Flow Using Finite Volume Method (유한체적법을 이용한 댐붕괴류 해석)

  • Shin, Eun Taek;Eum, Tae Soo;Chung, Hee Soo;Song, Chang Geun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.299-299
    • /
    • 2020
  • 국내외 발생하는 재난 중 70% 이상이 물과 관련된 재해로 분류되며, 집중호우와 태풍으로 인한 하천범람 및 내수침수 등으로 많은 피해를 발생시키고 있다. 특히 최근 발생하는 피해 양상은 과거에 발생하지 않았던 극한 강우로 인해 돌발적으로 발생하는 경우가 빈번하게 발생하고 있어 이에 따라 사전에 예측하여 미리 대비하는 선제적인 홍수 대비 시스템이 요구되고 있다. 선제적인 홍수 대비 시스템의 구축 여부는 정확한 하천 흐름 예측을 필요로 한다. 하지만 하천의 흐름은 댐붕괴, 제방붕괴, 하천 하상의 변동 등 다양한 상황에서 급격한 흐름의 변동이 발생하며, 이는 하천 흐름 예측에 장애물로 작용하여 정확도를 떨어뜨리는 요인이 된다. 특히 국내에는 산악지형과 수공구조물에 의한 불연속 단면이 다수 존재하고 있어 그 예측 결과에 대한 정확성에 대한 요구가 더욱 부각되고 있다. 그렇기 때문에 해당 문제를 해결하기 위한 다양한 기법들이 개발되어 실무에 적용되고 있으나 어떤 기법이 국내 하천특성에 적합한지 파악할 수 없으며, 그 정확성과 안정성에 측면에서 여전히 많은 문제점을 가지고 있는 실정이다. 본 연구에서는 불연속 흐름이 빈번하게 발생하는 국내 하천 특성에 적합한 수치 기법을 확인하고자 유량보존특성을 만족하는 유한체적기법 중 국내외적으로 다수 사용되었던 기법들을 비교 및 평가하였다. 불연속 흐름의 대표적인 예제로서 'Dam-break problem'과 충격파 해석 및 홍수기와 갈수기에 따른 하천 하상의 마름/젖음에 대한 평가를 할 수 있는 Toro's Riemann problems에 적용하여 비교하였으며 그 결과 값을 정량적인 수치로 나타내었다. 이를 통해 국내 하천 특성에 적합한 수치 기법을 선정하였으며. 향후 국내하천 환경을 만족할 뿐만 아니라 하천 종사자들의 요구에도 부합한 하천흐름해석 모형의 개발 시 많은 기여가 될 것이라 판단된다.

  • PDF

Numerical Analysis of Dam-Break Flow in an Experimental Channel using Cut-Cell Method (분할격자기법을 이용한 실험수조 댐붕괴파의 수치모의)

  • Kim, Hyung-Jun;Kim, Jung-Min;Cho, Yong-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2B
    • /
    • pp.121-129
    • /
    • 2009
  • In this study, dam-break flows are simulated numerically by using an efficient and accurate Cartesian cut-cell mesh system. In the system, most of the computational domain is discretized by the Cartesian mesh, while peculiar grids are done by a cutcell mesh system. The governing equations are then solved by the finite volume method. An HLLC approximate Riemann solver and TVD-WAF method are employed to calculation of advection flux of the shallow-water equations. To validate the numerical model, the model is applied to some problems such as a steady flow convergence on an ideal bed, a steady flow over an irregular bathymetry, and a rectangular tank problem. The present model is finally applied to a simulation of dam-break flow on an experimental channel. The predicted water surface elevations are compared with available laboratory measurements. A very reasonable agreement is observed.

Basic Study of Glimm's Algorithm for Green Water Simulation

  • Han Ju-Chull;Lee Seung-Keun;Lee Gyoung-Woo
    • Journal of Navigation and Port Research
    • /
    • v.28 no.9
    • /
    • pp.809-813
    • /
    • 2004
  • Experiments revealed that green water phenomena resemble dam-break, in which flow over deck edge forms a vertical wall of water and suddenly falls down into deck. In this paper the dam breaking problems were formulated using Glimm's algorithm, so-rolled, Random Choice method and, several validations were presented.

Flood Impact Pressure Analysis of Vertical Wall Structures using PLIC-VOF Method with Lagrangian Advection Algorithm

  • Phan, Hoang-Nam;Lee, Jee-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.675-682
    • /
    • 2010
  • The flood impact pressure acting on a vertical wall resulting from a dam-breaking problem is simulated using a navier-Stokes(N-S) solver. The N-S solver uses Eulerian Finite Volume Method(FVM) along with Volume Of Fluid(VOF) method for 2-D incompressible free surface flows. A Split Lagrangian Advection(SLA) scheme for VOF method is implemented in this paper. The SLA scheme is developed based on an algorithm of Piecewise Linear Interface Calculation(PLIC). The coupling between the continuity and momentum equations is affected by using a well-known Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm. Several two-dimensional numerical simulations of the dam-breaking problem are presented to validate the accuracy and demonstrate the capability of the present algorithm. The significance of the time step and grid resolution are also discussed. The computational results are compared with experimental data and with computations by other numerical methods. The results showed a favorable agreement of water impact pressure as well as the global fluid motion.

Development of Numerical Model to Analyze Levee Break (하천제방붕괴 해석모형의 개발)

  • Park, Jae-Hong;Han, Kun-Yeun;Ahn, Ki-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.7
    • /
    • pp.571-578
    • /
    • 2009
  • Levee-break Analysis model is developed to predict the variation of breach width according to time and to estimate inundation area and depth in protected lowland. This Model calculate flood depth using 4 point implicit finite difference method in river channel and analyze breach flow based on physical theory introducing soil transport equation and erosion process. Breach analysis model and channel flood model are combined into Levee-Break Model and this model is applied to actual levee break case. Then, this model can simulate reasonably many levee-break parameters such as river stage, breach width, breach formation and so on. If the applicability of this model is proved through applications to more various actual levee-break cases, the suggested model is expected to do more accurate flood analyses on levee break site.

Application of Risk Indexes for Classifying Vulnerable Zone and Planning Structural Alternative in Preparation for Debris Flow Disaster (토사재해 취약 지역 분류 및 구조적 대안 수립을 위한 위험지표 적용)

  • Oh, Seung Myeong;Song, Chang Geun;Jung, Min Hyung;Seong, Joo-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.3
    • /
    • pp.112-116
    • /
    • 2017
  • This study applied risk indexes to the disaster flow event occurred at Mt. Umyeon region in 2011. A 2D hydrodynamic model was employed to calculate flow characteristics, and the model was validated against two dam break flow problems conducted by Bellos and EU CADAM project. The model performance was shown to be satisfactory. In order to determine which index is more appropriate to assess the vulnerability of debris flow, 3 risk indexes (FII, FHR and VDI) were considered. It was found that VDI, which determines the risk level only by the velocity factor, consistently predicted the risk level corresponding to 6 because the velocity range was widely organized. However, in the case of FII and FHR, the risk was reasonably quantified due to combined consideration of significant factors of flow velocity and debris thickness. Therefore, FII and FHR are expected to be more accurate than VDI. However, two indexes still need to be improved to include major factors such as debris density or material properties.

Application of the Level Set Method for Free Surface Modeling (자유수면의 모의를 위한 레블셑V 기법의 적용)

  • Lee, Hae-Gyun
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.10
    • /
    • pp.451-455
    • /
    • 2010
  • Hydraulics usually deals with flows with free surface. When the surface curvature is small, the assumption of hydrostatic pressure distribution is enough. However, in the case, when the curvature is big, the non-hydrostatic pressure distribution should be taken into account and the Navier-Stokes equations should be employed instead of the depth-averaged shallow water equations. For the simulation of two immiscible fluids with different characteristics (e.g. water and air, water and oil), the level set method is selected for this purpose. The developed model is applied to classical dam break problem and the computational results are compared with the experimental data. The effectiveness of the developed model is confirmed.

A Numerical Study on Characteristics of Flood Wave Passing through Urban Areas (1) : Development and Verification of a Numerical Model (도시지역을 관통하는 홍수파의 특성에 관한 수치적 연구 (1) : 수치모형의 개발 및 검증)

  • Jeong, Woo-Chang;Lee, Jin-Woo;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.6
    • /
    • pp.89-97
    • /
    • 2009
  • In this study, a two-dimensional unstructured finite volume model based on the shallow-water equations and well-balanced HLLC scheme is developed. The model is verified by applying to various one- and two-dimensional problems related to the analyses of dam-break wave. The predicted numerical results agree very well with available analytical solutions and laboratory measurements. The model provides slightly more accurate results compared with the existing models.