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Basic Study of Glimm’s Algorithm for Green Water Simulation
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Abstract : Experiments revealed that green water phenomena resemble dam-break, in which flow over deck edge forms a vertical wall
of water and suddenly falls down into deck. In this paper the dam breaking problems were formulated using Glimm’s algorithm, so-called,

Random Choice method and, several validations were presented.
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1. Introduction

Stoker (1957) described extensively the one dimensional
dam-breaking problem, where it is assumed that at the
time zero there is a vertical wall of water on the side of a
vertical dam. At that moment the dam is removed and the
water flows into the empty region. One approach to the
problem is to model the flow using the shallow water
They can be treated by the method of
characteristics which

equations.
involves the applications of the
Riemann solutions comprised of standard forms such as
rarefaction waves, shock, etc. Since water on deck is
assumed to be shallow, it is necessary to employ a
numerical method to solve the shallow water equations
expressed as nonlinear hyperbolic  partial differer((tial
equations. The solutions of the equations have in general
discontinuities. These discontinuities may be produced by
non-smooth initial data or may be very well developed
spontaneously in the domain, even in the case of smooth
initial data. The main attention is drawn in this paper to
the application of Glimm's algorithm (Random Choice
Method, which is denoted as RCM) introduced by Glimm
(1965) to the shallow water equations. The advantages of
RCM are (1) discontinuities as shocks or contact surfaces
are computed without numerical diffusion and dispersion (2)
there are no numerical oscillations behind discontinuities (3)
boundary conditions are readily handled. The disadvantages
are (1) due to the randomness the profile of a rarefaction
wave i1s not computed smoothly but the average is very
solution (2) the locations of

close to the exact
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discontinuities at any time are not exact, however, their
average positions are exact. This paper is primarily devoted
to the explanation of RCM and a possibility to be applied to
the green water problems.

2. Glimm’'s algorithm

2.1 One dimensional RCM

When one dimensional shallow water equations are

considered, the equations with respect to the X direction

are:

H,+ZIHI+HZIX:O ()

u,+uu, +gH =0 (2)

¢ When 0 sec is taken as a starting time

We divide the computational length (L) into intervals of
length (Ax) in a domain [0, L] and approximate the water
height (H) and velocity (u) by piecewise function of
position (x) and time (t) (see Fig. 1). For example, in a
space (i-1/2, i+1/2), the water height is approximated as Hi
and the velocity is approximated as ui, and in a space
(i+1/2, 1+3/2), the water height is approximated as Hi+1 and
the velocity is approximated as ui+l. If we divide L into
very small spatial intervals, the approximation of H and u
In a space can be more exact up to a certain point. For
easy explanation the length (L) is divided only into two
intervals of Ax.
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i-1 Boundary
X=0

i irl Boundary js2
Fig. 1 Initial conditions for the first half time step in one

dimension

We need wall boundary conditions at x=0 and x=L. The
to be fixed and
impermeable walls. In a space (i-1, i-1/2), the water height

boundary conditions are assumed
is approximated as Hi, which is same as in the space
(i-1/2, i+1/2) and the velocity is approximated as —ui, which
is opposite to that in the space (i-1/2, i+1/2). In a space
(i+2/3, i+2), the water height is approximated as Hi-1,
which is the same as that in the space (i+1/2, i+3/2) and
the velocity is approximated as —ui.; , which is opposite to
that in space (i+1/2, i+3/2). The time step (At) is chosen so
that the Riemann solutions at adjacent points do not
overlap. This can be guaranteed by application of the
Courant-Friedrichs-Lewy (CFL) condition:

e C Ax
" max(A4BS(V,)+ C) (3)

Cen is the CFL coefficient which satisfies 0 < Cen < %
Hence the RCM has a of %
(ABS(Vy)+C) is the maximum wave velocity present

through the domain at any given time. Vy and C denotes

stability limit max

the water particle velocity and the wave speed (VgH).

+ first half time step from O to At/2
There are three steps to advance time from O to At/2 sec.
The first step is to apply the local Riemann problems (see
Toro (2001) for Riemann problems). Each Riemann problem
is solved in the spaces (i-1, 1), (i, i+1) and (i+1, i+2) in Fig.
1. See Fig. 2 for the possible water pattern after the
imaginary dam breaks, in which the dams exist at the
locations of i-1/2, i+1/2 and i+3/2.

The second step is to find randomly sampled points in
the same spaces as used in the solutions of the first step.
The random number, which is between -0.5 and 05, is
positive in the first half time step. The randomly chosen
points (where water heights and velocities are obtained

from the solutions of the local Riemann problems) are
obtained by multiplying the positive random number by Ax
(see Fig. 2 for the positions of the randomly sampled
points). The randomly sampled water heights and velocities
are assumed to represent each space. The third step is to
treat the boundary conditions. The sampled point in the
space (i-1, 1) is located in the real domain. The sampled
point in the space (i+1, i+2) is outside the boundary. In that
case we move both of the wall boundaries by a distance of
Ax/2 to the left.

¥

i-1 Boundary i+1 Boundary i+D

Fig. 2 The local Riemann problems are implemented for the
first half time step (At/2) and the small arrows represent
the randomly sampled points at each designated space.

+ second half time step from At/2 to At

There are the same three steps as in the first half time
step to advance time from At/2 to At. The local Riemann
problems are solved. The randomly sampled points are
obtained using the negative random numbers so that they
can represent the water height and velocity at each space.
The wall boundaries move half-spatial interval (Ax/2) to
the right and the domain returns to the original one.

We repeat the above procedure for each At obtained by
the CFL conditions. When the accumulation of At reaches to
a pre—defined time limit, the computer program stops.

2.2 Two dimensional RCM

Two dimensional shallow water equations are written for
computing green water flow as follows:

H, +ufl + Hu +vH + Hr,=0 )

u,tuu,+vu,+gH =0 )
v,tuv, +vv, + g, =0 ©)
£ water height

U : water velocity in the X direction

V: water velocity in the y direction
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& ¢ acceleration of gravity

Subscripts represent partial differentiation with respect to

Z (time), X or V.

The basic procedure of RCM is the use of Glimm's
algorithm as a building block in a fractional step method.
At each time step four quarter-steps are performed; each
quarter-step represents a sweep in either the x or y

direction. (1), (2) and (3) are rewritten for ' =constant (X

sweep) as;
u,vuu +gll, =0 7
v,+uv, =0 )
H +uH +Hu, =0 ©)

And one can find a similar way for x=constant (x

sweep) as;

V,+VV},+gHy=O

(10)
u,+vi, = 0 an
H, +vH, +Hv, =0 (12)

(8) and (11) say that ¥ and# are transported as passive

scalars in the & sweep and Y sweep, respectively.

The solutions of (7)-(12) two

dimensional RCM, of which the procedures are:

are obtained using

1. (4)-(6) are written only in the x direction and only in
the y direction resulting in (7)-(9) and (10)-(12),
respectively.

. Aty is found through the CFL conditions in (3).

3. During the first half time step (Atl/2), the same

procedure as when time advances from 0 sec to At/2

Do

sec in the 1D solution is applied only in the x direction
(y is constant) using (7)-(9). This procedure is named
as the first x sweep.

4. The passive scalar is determined for the second half
time step (At)/2) according to the sign of random
number.

5. During the second half time step (Ati/2), the same
procedure as when time advances from 0 sec to At/2

sec in the 1D solution is applied only in the y direction
(x is constant) using (10)-(12). This procedure is
named as the first y sweep.

6. The passive scalar is determined for the third half time
step (Aty/2)

7. Aty is found through the CFL conditions.

8. During the third half time step (Aty/2), the same
procedure as when time advances from At/Z sec to At
sec in the 1D solution is applied only in the x direction
(v is constant) using (7)-(9). This procedure is named
as the second X sweep.

9. The passive scalar is determined for the fourth half
time step (At2/2)

10. During the fourth half time step (Aty/2), the same
procedure as when time advances from At/2 sec to At
sec in the 1D solution is applied only in the y direction
(x is constant) using (10)-(12). This procedure is

named as the second y sweep.

3. Validation

3.1 Presentation of diagonal dam-break in the

sguare box

Let us consider a square box. The dimensions of the
square box are 10 m x 10 m and are divided into intervals
of length (0.2 m) in the both directions. The box is filled
with different states of water separated by the initial
discontinuity (see Fig. 3 for the initial conditions). There is
no experimental data for this test. However, when along the
diagonal line (which is instructed by an arrow in the box)
the problem can be treated as one dimensional, the effect of
some techniques (e.g. x-y-x-y- sweeps and splitting
schemes in two dimensional RCM) may be found for the
first few seconds after the dam-break along the diagonal
(see Fig. 4 to 5).

Initial disconfimuity

Fig. 3(a) Initial conditions for the diagonal dam-break
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® 3.2 Presentation of water flow onto a deck-shaped
dry space

I Fekken  (1999) mentioned that a  reasonable
approximation for the model test of Green water seemed
- o to be the dam breaking problem with a vertical wall of

el E s water height at the most forward part of the bow, linearly

S : T decreasing to a certain point. In his simulation using

Fig. 3(b)y Water Simulation of initial conditions for the Navier-stokes  equations,  the appearance of the

diagonal dam-break (time = 0 sec) high-velocity water ‘tongue’ is very well visible in a

movie of simulation. A similar approach for the initial
Time. 0.2 sec conditions around the deck is used to show the validation
of RCM by simulating water flow on the deck. See the

“—M‘“ initial water shape in Fig. 6 and the sequence of the
::‘;’;;TZI dam-break events on deck in Fig. 7.

0 5 10 15
Diagonal length (m)

Water depth (m)

Fig. 4(a) comparison between numerical solution of two
dimensional RCM and analytical solution .

e Fig. 6 Initial conditions; the vertical water is piled up
around the bow from 0 cm to 10 cm and the velocity is

assumed 0 m/sec.
Fig. 4(b) Water Simulation for the diagonal dam-break (time

= 0.2 sec)
Time, 0.4 sec
12
£ 10
g‘ 2 M —e— numerical
v 4 . — analytical
:
= 0
0 5 10 15

Dlagonal length (m)

Fig. 5(a) comparison between numerical solution of two
dimensional RCM and analytical solution .

- Fig. 7 The evident appearance of the water tongue and the
Fig. 5(b) Water Simulation for the diagonal dam-break (time  water pattern similar to Fekken’s work, in which the time
= 04 sec) step is 0.2 sec

- 812 -



Ju-Chull Han - Seung-Keun Lee - Gyoung-Woo Lee

4. Conclusions

This paper showed a possibility of the use of Glimm’s
algorithm, so-called Random Choice method to be applied to
the matter of green water. The next stage of this research
will be carried on with an effort to reveal the effect of
green water on ship oscillations considered.
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