• Title/Summary/Keyword: DRAM application

Search Result 52, Processing Time 0.027 seconds

Performance enhancement using dual port DRAM in Mobile SoC (Mobile SoC에서의 Dual Port DRAM을 사용한 Performance 향상)

  • Roh, Jong-Ho;Chung, Eui-Young
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.533-534
    • /
    • 2008
  • By using Dual Port DRAM to Multi-media SoC, an improved performance is achieved in this paper. The proposed scheme greatly help the multi-media SoC like a application for full HDTV, and it can be extended to the application field which is needed the low access latency with heavy traffic. Additionally, the proposed scheme help to down the BUM cost of system.

  • PDF

Bounding Worst-Case DRAM Performance on Multicore Processors

  • Ding, Yiqiang;Wu, Lan;Zhang, Wei
    • Journal of Computing Science and Engineering
    • /
    • v.7 no.1
    • /
    • pp.53-66
    • /
    • 2013
  • Bounding the worst-case DRAM performance for a real-time application is a challenging problem that is critical for computing worst-case execution time (WCET), especially for multicore processors, where the DRAM memory is usually shared by all of the cores. Typically, DRAM commands from consecutive DRAM accesses can be pipelined on DRAM devices according to the spatial locality of the data fetched by them. By considering the effect of DRAM command pipelining, we propose a basic approach to bounding the worst-case DRAM performance. An enhanced approach is proposed to reduce the overestimation from the invalid DRAM access sequences by checking the timing order of the co-running applications on a dual-core processor. Compared with the conservative approach, which assumes that no DRAM command pipelining exists, our experimental results show that the basic approach can bound the WCET more tightly, by 15.73% on average. The experimental results also indicate that the enhanced approach can further improve the tightness of WCET by 4.23% on average as compared to the basic approach.

Techniques to improve DRAM Energy Efficiency through Selective Refresh (선택적 리프레시를 통한 DRAM 에너지 효율 향상 기법)

  • Kim, Young-Ung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.179-185
    • /
    • 2020
  • DRAM is a major component of the main memory system. As the operating system evolves and application complexity and capacity increases, the capacity and speed of DRAM are also increasing. DRAM should perform a refresh action of periodically reading and then re-storing stored values, and the accompanying performance and power/energy overhead embodies characteristics that worsen as capacity increases. This study proposes an energy efficiency improvement technique that efficiently stores the rows that need to be refreshed within 64ms and 128ms using the bloom filter for cells with the lowest retention time of electrons. The results of the experiment showed that the proposed technique resulted in an average 5.5% performance improvement, 76.4% reduction in average refresh energy, and 10.3% reduction in average EDP.

Memory window characteristics of vertical nanowire MOSFET with asymmetric source/drain for 1T-DRAM application (비대칭 소스/드레인 수직형 나노와이어 MOSFET의 1T-DRAM 응용을 위한 메모리 윈도우 특성)

  • Lee, Jae Hoon;Park, Jong Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.4
    • /
    • pp.793-798
    • /
    • 2016
  • In this work, the memory window characteristics of vertical nanowire device with asymmetric source and drain was analyzed using bipolar junction transistor mode for 1T-DRAM application. A gate-all-around (GAA) MOSFET with higher doping concentration in the drain region than in the source region was used. The shape of GAA MOSFET was a tapered vertical structure that the source area is larger than the drain area. From hysteresis curves using bipolar junction mode, the memory windows were 1.08V in the forward mode and 0.16V in the reverse mode, respectively. We observed that the latch-up point was larger in the forward mode than in the reverse mode by 0.34V. To confirm the measurement results, the device simulation has been performed and the simulation results were consistent in the measurement ones. We knew that the device structure with higher doping concentration in the drain region was desirable for the 1T-DRAM using bipolar junction mode.

Circuit Design of DRAM for Mobile Generation

  • Sim, Jae-Yoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • In recent few years, low-power electronics has been a leading drive for technology developments nourished by rapidly growing market share. Mobile DRAM, as a fundamental block of hand-held devices, is now becoming a product developed by limitless competition. To support application specific mobile features, various new power-reduction schemes have been proposed and adopted by standardization. Tightened power budget in battery-operated systems makes conventional schemes not acceptable and increases difficulty of the circuit design. The mobile DRAM has successfully moved down to 1.5V era, and now it is about to move to 1.2V. Further voltage scaling, however, presents critical problems which must be overcome. This paper reviews critical issues in mobile DRAM design and various circuit schemes to solve the problems. Focused on analog circuits, bitline sensing, IO line sensing, refresh-related schemes, DC bias generation, and schemes for higher data rate are covered.

Fail Prediction of DRAM Module Outgoing Quality Assurance Inspection using Ensemble Learning Algorithm (앙상블 학습을 이용한 DRAM 모듈 출하 품질보증 검사 불량 예측)

  • Kim, Min-Seok;Baek, Jun-Geol
    • IE interfaces
    • /
    • v.25 no.2
    • /
    • pp.178-186
    • /
    • 2012
  • The DRAM module is an important part of servers, workstations and personal computer. Its malfunction causes a lot of damage on customer system. Therefore, customers demand the highest quality products. The company applies DRAM module Outgoing Quality Assurance Inspection(OQA) to secures the highest quality. It is the key process to decides shipment of products through sample inspection method with customer oriented tests. High fraction of defectives entering to OQA causes inevitable high quality cost. This article proposes the application of ensemble learning to classify the lot status to minimize the ratio of wrong decision in OQA, observing a potential in reducing the wrong decision.

Hybrid Main Memory based Buffer Cache Scheme by Using Characteristics of Mobile Applications (모바일 애플리케이션의 특성을 이용한 하이브리드 메모리 기반 버퍼 캐시 정책)

  • Oh, Chansoo;Kang, Dong Hyun;Lee, Minho;Eom, Young Ik
    • Journal of KIISE
    • /
    • v.42 no.11
    • /
    • pp.1314-1321
    • /
    • 2015
  • Mobile devices employ buffer cache mechanisms, just as in computer systems such as desktops or servers, to mitigate the performance gap between main memory and secondary storage. However, DRAM has a problem in that it accelerates battery consumption by performing refresh operations periodically to maintain the stored data. In this paper, we propose a novel buffer cache scheme to increase the battery lifecycle in mobile devices based on a hybrid main memory architecture consisting of DRAM and non-volatile PCM. We also suggest a new buffer cache policy that allocates buffers based on process states to optimize the performance and endurance of PCM. In particular, our algorithm allocates each page to the appropriate position corresponding to the state of the application that owns the page, and tries to ensure a rapid response of foreground applications even with a small amount of DRAM memory. The experimental results indicate that the proposed scheme reduces the elapsed time of foreground applications by 58% on average and power consumption by 23% on average without negatively impacting the performance of background applications.

A Study on the Extraction of Cell Capacitance and Parasitic Capacitance for DRAM Cell Structures (DRAM 셀 구조의 셀 캐패시턴스 및 기생 캐패시턴스 추출 연구)

  • Yoon, Suk-In;Kwon, Oh-Seob;Won, Tae-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.7
    • /
    • pp.7-16
    • /
    • 2000
  • This paper reports a methodology and its application for extracting cell capacitances and parasitic capacitances in a stacked DRAM cell structure by a numerical technique. To calculate the cell and parasitic capacitances, we employed finite element method (FEM), The three-dimensional DRAM cell structure is generated by solid modeling based on two-dimensional mask layout and transfer data. To obtain transfer data for generating three-dimensional simulation structure, topography simulation is performed. In this calculation, an exemplary structure comprising 4 cell capacitors with a dimension of $2.25{\times}1.75{\times}3.45{\mu}m^3$, 70,078 nodes with 395,064 tetrahedra were used in ULTRA SPARC 10 workstation. The total CPU time for the simulation was about 25 minutes, while the memory size of 201MB was required. The calculated cell capacitance is 24.34fF per cell, and the influential parasitic capacitances in a stacked DRAM cell are investigated.

  • PDF

Effect of Shield Line on Noise Margin and Refresh Time of Planar DRAM Cell for Embedded Application

  • Lee, Jung-Hwan;Jeon, Seong-Do;Chang, Sung-Keun
    • ETRI Journal
    • /
    • v.26 no.6
    • /
    • pp.583-588
    • /
    • 2004
  • In this paper we investigate the effect of a shield metal line inserted between adjacent bit lines on the refresh time and noise margin in a planar DRAM cell. The DRAM cell consists of an access transistor, which is biased to 2.5V during operation, and an NMOS capacitor having the capacitance of 10fF per unit cell and a cell size of $3.63{\mu}m^2$. We designed a 1Mb DRAM with an open bit-line structure. It appears that the refresh time is increased from 4.5 ms to 12 ms when the shield metal line is inserted. Also, it appears that no failure occurs when $V_{cc}$ is increased from 2.2 V to 3 V during a bump up test, while it fails at 2.8 V without a shield metal line. Raphael simulation reveals that the coupling noise between adjacent bit lines is reduced to 1/24 when a shield metal line is inserted, while total capacitance per bit line is increased only by 10%.

  • PDF

DRAM Buffer Data Management Techniques to Enhance SSD Performance (SSD 성능 향상을 위한 DRAM 버퍼 데이터 처리 기법)

  • Im, Kwang-Seok;Han, Tae-Hee
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.7
    • /
    • pp.57-64
    • /
    • 2011
  • To adjust the difference of bandwidth between host interface and NAND flash memory, DRAM is adopted as the buffer management in SSD (Solid-state Disk). In this paper, we propose cost-effective techniques to enhance SSD performance instead of using expensive high bandwidth DRAM. The SSD data can be classified into three groups such as user data, meta data for handling user data, and FEC(Forward Error Correction) parity/ CRC(Cyclic Redundancy Check) for error control. In order to improve the performance by considering the features of each data, we devise a flexible burst control method through monitoring system and a page based FEC parity/CRC application. Experimental results show that proposed methods enhance the SSD performance up to 25.9% with a negligible 0.07% increase in chip size.