DOI QR코드

DOI QR Code

Circuit Design of DRAM for Mobile Generation

  • Sim, Jae-Yoon (Dept. EE, Pohang University of Science and Technology)
  • Published : 2007.03.31

Abstract

In recent few years, low-power electronics has been a leading drive for technology developments nourished by rapidly growing market share. Mobile DRAM, as a fundamental block of hand-held devices, is now becoming a product developed by limitless competition. To support application specific mobile features, various new power-reduction schemes have been proposed and adopted by standardization. Tightened power budget in battery-operated systems makes conventional schemes not acceptable and increases difficulty of the circuit design. The mobile DRAM has successfully moved down to 1.5V era, and now it is about to move to 1.2V. Further voltage scaling, however, presents critical problems which must be overcome. This paper reviews critical issues in mobile DRAM design and various circuit schemes to solve the problems. Focused on analog circuits, bitline sensing, IO line sensing, refresh-related schemes, DC bias generation, and schemes for higher data rate are covered.

Keywords

References

  1. C. Lauterback, W. Weber, and D. Romer, 'Charge-sharing concept and new clocking scheme for power efficiency and electromagnetic emission improvement of boosted charge pumps,' IEEE J. Solid State Circuits, Vol.35, pp.7l9-723, May. 2000 https://doi.org/10.1109/4.841499
  2. T. Tanzawa and S. Atsumi, 'Optimization of word-line booster circuits for low-Voltage flash memories, ' IEEE J. Solid State Circuits, Vol.34, pp.109l-1098, Aug. 1999 https://doi.org/10.1109/4.777107
  3. T. Hamamoto, Y. Morooka, T. Amano, and H. Ozaki, 'An efficient charge recycle and transfer pump circuit for low operating Voltage DRAMs, ' Symposium on VLSI Circuits, pp.110-111 , 1996 https://doi.org/10.1109/VLSIC.1996.507734
  4. J. Y. Sim, H. Yoon, K. C. Chun, H. S. Lee, S. P. Hong, S. Y. Kim, M. S. Kim, K. C. Lee, J. H. Yoo, D. I. Seo, and S. I. Cho, 'Double boosting pump, hybrid current sense amplifier, and binary weighted temperature sensor adjustment schemes for 1.8V 128Mb mobile DRAMs, ' Symposium on VLSI Circuits, pp.294-297, 2002 https://doi.org/10.1109/VLSIC.2002.1015108
  5. K. C. Chun, J. Y. Sim, H. Yoon, H. S. Lee, S. P. Hong, K. C. Lee, J. H. Yoo, and D. I. Seo, 'A 1.8V 128 Mb mobile DRAM with hidden-precharged triple pumping scheme and dual-path hybrid current sense amplifier,' Current Applied Physics, Vol. 4, pp.25-29, Feb. 2004 https://doi.org/10.1016/j.cap.2003.09.008
  6. E. Seevinck, P. Beers, and H. Ontrop, 'Currentmode techniques for high-speed VLSI circuits with application to current sense amplifier for CMOS SRAMs,' IEEE J. Solid State Circuits, Vol.26, pp.525-536, Apr. 1991 https://doi.org/10.1109/4.75050
  7. S. Tanoi, Y. Tanaka, T. Tanabe, A. Kita, T. Inada, R. Hamazaki, Y. Ohtsuki, and M. Uesugi, 'A 32-bank 256-Mb DRAM with cache and TAG,' IEEE J. Solid State Circuits, Vol.29, pp.1330-1335, Nov. 1994 https://doi.org/10.1109/ISSCC.1994.344695
  8. K. Seno, K. Knorpp, L. L. Shu, N. Teshima, H. Kihara, H. Sato, F. Miyaji, M. Takeda, M. Sasaki, Y. Torno, P. T. Chuang, and K. Kobayashi, 'A 9ns l6-Mb CMOS SRAM with offset-compensated current sense amplifier,' IEEE J. Solid State Circuits, Vol.28, pp.1119-1124, Nov. 1993 https://doi.org/10.1109/4.245591
  9. Shibata, 'Current sense amplifiers for low-voltage memories,' IEICE Trans. on Electronics, pp.1120-1130,1996
  10. Y. Kagenishi, H. Hirano, A. Shibayama, H. Kotani, N. Moriwaki, M. Kojima, and T. Sumi, 'Low-power self-refresh mode DRAM with temperature detecting circuit,' Symposium on VLSI Circuits, pp.43-44, 1993
  11. H. Tanaka, M. Aoki, T. Sakata, S. Kimura, N. Sakashita, H. Hidaka, T. Tachibana, and K. Kimura, 'A precise on-chip Voltage generator for a gigascale DRAM with a negative word-line scheme,' IEEE J. Solid State Circuits, Vol. 34, pp.1084-1090, Aug. 1999 https://doi.org/10.1109/4.777106
  12. H. Yamauchi, T. Iwata, A. Uno, M. Funkmoto, and T. Fujita, 'A circuit technology for self-refresh 16Mb DRAM with less than 0.5 uA/MB data-retention current,' IEEE J. Solid State Circuits, Vol. 30, pp.1174-1182, Nov. 1995 https://doi.org/10.1109/4.475704
  13. T. Yamagata, S. Tomishima, M. Tsukude, T. Tsuruda, Y. Hashizume, and K. Arimoto, 'Low Voltage circuit design techniques for battery-operated and/or giga-scale DRAM's,' IEEE J. Solid State Circuits, Vol. 30, pp.1183-1188, Nov. 1995 https://doi.org/10.1109/4.475705
  14. J. Y. Sim, K. W. Kwon, and K. C. Chun, 'Charge-transferred presensing, negatively precharged word-line, and temperature-insensitive power-up schemes for low-voltage DRAMs,' IEEE J. Solid State Circuits, Vol.39, pp.694-703, Apr. 2004 https://doi.org/10.1109/JSSC.2004.825224
  15. Y. Sato, T. Suzuki, T. Aikawa, S. Y. Fujioka, W. Fujieda, H. Kobayashi, H. Ikeda, T. Nagasawa, A. Funyu, Y. Fujii, K. I. Kawasaki, M. Yamazaki, and M. Taguchi, 'Fast cycle RAM(FCRAM); a 20-ns random row access pipe-lined operating DRAM,' Symposium on VLSI Circuits, pp.22-25, 1998 https://doi.org/10.1109/VLSIC.1998.687990
  16. Y. Yokoyama, Y. Yokoyama, N. Itoh, M. Hasegawa, M. Katayama, H. Akasaki, M. Kaneda, T. Ueda, Y. Tanaka, E. Yamasaki, M. Todokoro, K. Toriyama, H. Miki, M. Yagyu, K. Takashima, T. Kobayashi, S. Miyaoka, and N. Tamba, 'A 1.8- V embedded l8-Mb DRAM Macro with a 9-ns RAS access time and memory-cell area efficiency of $\%$,' IEEE J. Solid State Circuits, Vol. 36, pp.503-509, Mar. 2001 https://doi.org/10.1109/4.910489
  17. T. Nagai, K. Numata, M. Ogihara, M. Shimizu, K. Imai, T. Hara, M. Yoshida, Y. Saito, Y. Asao, S. Sawada, and S. Fujii, 'A 17-ns 4-Mb CMOS DRAM,' IEEE J. Solid State Circuits, Vol. 26, pp.1538-1543, Nov. 1991 https://doi.org/10.1109/4.98969
  18. J. Y. Sim, K. W. Kwon, K. C. Chun, and D. I. Seo, 'Offset- compensated direct sensing and charge-recycled precharge schemes for sub-1.0V high-speed DRAM's,' IEICE Trans. on Electronics, Vol. E87-C, pp.801-808, May, 2004
  19. A. P. Brokaw, 'A temperature sensor with single resistor set-point programming,' International Solid-State Circuit Conf., pp.334-335, 1996 https://doi.org/10.1109/ISSCC.1996.488642
  20. A. Bakker and J. H. Huijsing, 'Micropower CMOS temperature sensor with digital output,' IEEE J. Solid State Circuits, Vol.31, pp.933-937, Jul. 1996 https://doi.org/10.1109/4.508205
  21. M. A. P. Pertijs, A. Niederkom, X. Ma, B. McKillop, A. Bakker, and J. H. Huijsing, 'A CMOS smart temperature sensor with a $3{\sigma}$ inaccuracy of $\pm{0.5}^{\circ}C$from$-50^{\circ}C$to $120^{\circ}C$,' IEEE J. Solid State Circuits, Vol.40, pp.454-461, Feb. 2005 https://doi.org/10.1109/JSSC.2004.841013

Cited by

  1. A Low Power CMOS Phase Frequency Detector in High Frequency PLL System vol.1049, pp.1742-6596, 2018, https://doi.org/10.1088/1742-6596/1049/1/012059