• 제목/요약/키워드: DNA diagnostics

검색결과 61건 처리시간 0.035초

Clinical Evaluation of Human Papillomavirus DNA Genotyping Assay to Diagnose Women Cervical Cancer

  • Kim, Sung-Hyun;Lee, Dong-Sup;Kim, Yeun;Kim, Gee-Hyuk;Park, Sang-Jung;Choi, Yeon-Im;Kim, Tae-Ue;Park, Kwang-Hwa;Lee, Hye-Young
    • 대한의생명과학회지
    • /
    • 제18권2호
    • /
    • pp.123-130
    • /
    • 2012
  • In this study, we evaluated the human papillomavirus (HPV) genotyping test called MolecuTech REBA HPV-$ID^{(R)}$ (YD Diagnostics, Seoul, Korea) for 704 women who also had cervical cytological evaluations by Thin Prep. The infection rate of high-risk HPV genotypes was 56.6% in patients with normal cytology, 59.8% in those with benign, low-grade squamous intraepithelial lesions, 51.4% in those with atypical squamous cells of uncertain significance, 92.3% in those with high-grade squamous intraepithelial lesions, and 94.1% in those with squamous cell carcinoma or adenocarcinoma. HPV 16 was the most common genotype detected in any lesion, followed by HPV 53, 58, 33, 52, 45, 31, and 35, in order. The HPV DNA test with PCR-REBA is a very highly sensitive, but less specific, method. The infection rates and HPV genotype distribution of non-Korean people versus people from South Korea showed regional differences.

First Record of Three Uronychia Species (Ciliophora: Spirotrichea: Euplotida) from Korea

  • Kim, Se-Joo;Min, Gi-Sik
    • Animal Systematics, Evolution and Diversity
    • /
    • 제27권1호
    • /
    • pp.25-33
    • /
    • 2011
  • Three morphospecies of the genus Uronychia, i.e. U. setigera Calkins, 1902, U. binucleata Young, 1922, and U. multicirrus Song, 1997, were collected from the coastal waters of Gumjin-ri on the East Sea and the public waterfront of Incheon on the Yellow Sea in Korea, respectively. These species are described based on live observation, protargol impregnation, silver nitrate impregnation, and their morphometrics. Diagnostic keys for these species are also provided. In addition, their small subunit ribosomal DNA sequences were compared with previously known sequences of Uronychia species. Diagnostics of three Uronychia species are as follows: U. setigera: $50-80\;{\mu}m$ long in vivo, oval-shaped, 2 macronuclear nodules (Ma), 1 spur on the left margin, 11 adoral membranelles (AM) 1, 4 AM2, 1 buccal cirrus (BC), 4 frontal cirri (FC), 3 left marginal cirri (LMC), 2 ventral cirri (VC), 5 transverse cirri (TC), 3 caudal cirri (CC), 6 dorsal kineties (DK), and approximately 23 cilia in the leftmost kinety. U. binucleata: $70-110\;{\mu}m$ long in vivo, oval to slightly rectangular shaped, 2 Ma, 1 micronucleus (Mi), 2 spurs on the posterior region, 11 AM1, 4 AM2, 1 BC, 4 FC, 3 LMC, 2 VC, 5 TC, 3 CC, 6 DK, and approximately 37 cilia in the leftmost kinety. U. multicirrus: $140-200\;{\mu}m$ long in vivo, oval to slightly rectangular shaped, ca. 7 Ma, 1 Mi, 11 AM1, 4 AM2, 1 BC, 4 FC, 3 LMC, approximately 8 VC, 5 TC, 3 CC, and 6 DK. This study presents the first record of this genus in Korea.

Generation and characterization of a monoclonal antibody against MERS-CoV targeting the spike protein using a synthetic peptide epitope-CpG-DNA-liposome complex

  • Park, Byoung Kwon;Maharjan, Sony;Lee, Su In;Kim, Jinsoo;Bae, Joon-Yong;Park, Man-Seong;Kwon, Hyung-Joo
    • BMB Reports
    • /
    • 제52권6호
    • /
    • pp.397-402
    • /
    • 2019
  • Middle East respiratory syndrome coronavirus (MERS-CoV) uses the spike (S) glycoprotein to recognize and enter target cells. In this study, we selected two epitope peptide sequences within the receptor binding domain (RBD) of the MERS-CoV S protein. We used a complex consisting of the epitope peptide of the MERS-CoV S protein and CpG-DNA encapsulated in liposome complex to immunize mice, and produced the monoclonal antibodies 506-2G10G5 and 492-1G10E4E2. The western blotting data showed that both monoclonal antibodies detected the S protein and immunoprecipitated the native form of the S protein. Indirect immunofluorescence and confocal analysis suggested strong reactivity of the antibodies towards the S protein of MERS-CoV virus infected Vero cells. Furthermore, the 506-2G10G5 monoclonal antibody significantly reduced plaque formation in MERS-CoV infected Vero cells compared to normal mouse IgG and 492-1G10E4E2. Thus, we successfully produced a monoclonal antibody directed against the RBD domain of the S protein which could be used in the development of diagnostics and therapeutic applications in the future.

심장사상충에 감염된 개의 혈액에서 심장사상충 유전자를 검출할 수 있는 실시간 중합효소연쇄반응 기법 개발 (Development of Real-time PCR Assays for Detection of Dirofilaria immitis from Infected Dog Blood)

  • 오인영;김경태;전진현;신재호;성호중
    • 대한임상검사과학회지
    • /
    • 제48권2호
    • /
    • pp.88-93
    • /
    • 2016
  • 선형 사상충의 일종인 심장사상충은 개의 심폐 사상충증을 유발한다. 이에 본 연구의 목적은 심장사상충을 효과적으로 검출할 수 있는 실시간 중합효소연쇄반응 기법을 개발함에 있다. 연구에 있어서 사용된 프라이머 및 프로브는 선행연구에서 제작된 심장사상충 특이 프라이머 및 새롭게 제작된 TaqMan 프로브를 이용하였다. 선행연구에서 제작된 프라이머 및 농도별로 희석된 게놈유전자와 플라스미드유전자가 SYBR Green 실시간 중합효소연쇄반응 수행에 이용되었으며, 중합효소연쇄반응 과정 중 증폭 이후의 녹는 곡선의 결과를 분석하였다. 분석결과 사용된 프라이머는 각각 게놈유전자 및 플라스미드 유전자에서 특이 녹는 곡선을 나타냄에 따라 심장사상충 특이 사이토크롬 C 산화효소 유전자만을 증폭하고 있음을 확인 할 수 있었다. 새롭게 제작된 TaqMan 프로브는 SYBR Green 실시간 중합효소연쇄반응과의 결과를 농도별로 희석된 플라스미드 유전자를 이용하여 비교 분석하였고, 분석결과 TaqMan 프로브를 이용한 실시간 중합효소연쇄반응이 검출효율 및 특이도에 있어서 우수함을 확인할 수 있었다. 본 연구를 통하여 개발한 실시간 중합효소연쇄반응은 기존의 전통적인 진단기법의 한계를 극복할 수 있는 신속하고 정확한 향상된 진단기법을 제시한다.

The Impact of Transposable Elements in Genome Evolution and Genetic Instability and Their Implications in Various Diseases

  • Ayarpadikannan, Selvam;Kim, Heui-Soo
    • Genomics & Informatics
    • /
    • 제12권3호
    • /
    • pp.98-104
    • /
    • 2014
  • Approximately 45% of the human genome is comprised of transposable elements (TEs). Results from the Human Genome Project have emphasized the biological importance of TEs. Many studies have revealed that TEs are not simply "junk" DNA, but rather, they play various roles in processes, including genome evolution, gene expression regulation, genetic instability, and cancer disposition. The effects of TE insertion in the genome varies from negligible to disease conditions. For the past two decades, many studies have shown that TEs are the causative factors of various genetic disorders and cancer. TEs are a subject of interest worldwide, not only in terms of their clinical aspects but also in basic research, such as evolutionary tracking. Although active TEs contribute to genetic instability and disease states, non-long terminal repeat transposons are well studied, and their roles in these processes have been confirmed. In this review, we will give an overview of the importance of TEs in studying genome evolution and genetic instability, and we suggest that further in-depth studies on the mechanisms related to these phenomena will be useful for both evolutionary tracking and clinical diagnostics.

Methylation of RASSF1A and CDH13 Genes in Individualized Chemotherapy for Patients with Non-small Cell Lung Cancer

  • Zhai, Xu;Li, Shi-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권12호
    • /
    • pp.4925-4928
    • /
    • 2014
  • Background: This study aimed to evaluate the methylation of RASSF1A and CDH13 gene promoter regions as a marker for monitoring chemotherapeutic efficacy with personalized medicine for patients with NSCLC, in the hope of providing a new direction for NSCLC individualized chemotherapy. Materials and Methods: 42 NSCLC patients and 40 healthy controls were included. Patient blood samples were collected in the whole process of chemotherapy. Methylation of RASSF1A and CDH13 gene promoter regions was detected by the methylation specific polymerase chain reaction (MSP). Results: The rate of RASSF1A and CDH13 gene methylation in 42 cases of NSCLC patients was significantly higher than in 40 healthy controls (52.4% to 0.0%, 54.8% to 0.0%, p<0.05). After the chemotherapy, the hyper-methylation of RASSF1A and CDH13 genes in PR group and SD group decreased significantly (p<0.05), and was significantly different from that in PD group (p<0.05), but not as compared with healthy controls (P>0.05). With chemotherapy, RASSF1A and CDH13 promoter region methylation rate in 42 cases of patients showed a declining trend. Conclusions: The methylation level of RASSF1A and CDH13 gene promoter region can reflect drug sensitivity of tumors to individualized treatment.

A New Generation of Biocompatible Pulse-discharged Plasma by Marx Generator and Its Application on the Biomolecules

  • 박지훈;;홍영준;;김상엽;김영조;이구협;이승목;박봉상;전수남;최은하
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.240.2-240.2
    • /
    • 2014
  • Characteristics of pulse-discharged plasma in liquid and its biological applications to proteins are investigated by making use of high voltage Marx generator. The Marx generator has been consisted of 5 stages, where each charging capacitor is $0.5{\mu}F$ to generate a high voltage pulse with rising time of $1{\mu}s$. We have applied an input voltage of 6 kV to the each capacitor of $0.5{\mu}F$. The high voltage pulsed plasma has been generated inside a polycarbonate tube by a single-shot operation, where the breakdown voltage is measured to be 7 kV, current of 1.2 kA, and pulse width of ${\sim}1{\mu}s$ between the two electrodes of anode-cathode made of stainless steel, which are immersed into the liquids. For the investigation of the influence of pulsed plasma on biomolcules, we have focused on the amino acids, DNA, proteins, cell and cholesterol.

  • PDF

Genetic tests by next-generation sequencing in children with developmental delay and/or intellectual disability

  • Han, Ji Yoon;Lee, In Goo
    • Clinical and Experimental Pediatrics
    • /
    • 제63권6호
    • /
    • pp.195-202
    • /
    • 2020
  • Developments in next-generation sequencing (NGS) techogies have assisted in clarifying the diagnosis and treatment of developmental delay/intellectual disability (DD/ID) via molecular genetic testing. Advances in DNA sequencing technology have not only allowed the evolution of targeted panels but also, and more currently enabled genome-wide analyses to progress from research era to clinical practice. Broad acceptance of accuracy-guided targeted gene panel, whole-exome sequencing (WES), and whole-genome sequencing (WGS) for DD/ID need prospective analyses of the increasing cost-effectiveness versus conventional genetic testing. Choosing the appropriate sequencing method requires individual planning. Data are required to guide best-practice recommendations for genomic testing, regarding various clinical phenotypes in an etiologic approach. Targeted panel testing may be recommended as a firsttier testing approach for children with DD/ID. Family-based trio testing by WES/WGS can be used as a second test for DD/ID in undiagnosed children who previously tested negative on a targeted panel. The role of NGS in molecular diagnostics, treatment, prediction of prognosis will continue to increase further in the coming years. Given the rapid pace of changes in the past 10 years, all medical providers should be aware of the changes in the transformative genetics field.

Nano and micro structures for label-free detection of biomolecules

  • Eom, Kil-Ho;Kwon, Tae-Yun;Sohn, Young-Soo
    • 센서학회지
    • /
    • 제19권6호
    • /
    • pp.403-420
    • /
    • 2010
  • Nano and micro structure-based biosensors are promising tool for label-free detection of biomolecular interactions with great accuracy. This review gives a brief survey on nano and micro platforms to sense a variety of analytes such as DNA, proteins and viruses. Among incredible nano and micro structure for bio-analytical applications, the scope of this paper will be limited to micro and nano resonators and nanowire field-effect transistors. Nanomechanical motion of the resonators transducers biological information to readable signals. They are commonly combined with an optical, capacitive or piezo-resistive detection systems. Binding of target molecule to the modified surface of nanowire modulates the current of the nanowire through electrical field-effect. Both detection methods have advantages of label-free, real-time and high sensitive detection. These structures can be extended to fabricate array-type sensors for multiplexed detection and high-throughput analysis. The biosensors based on these structures will be applied to lab-on-a-chip platforms and point-of-care diagnostics. Basic concepts including detection mechanisms and trends in their fields will be covered in this review.

Strategies Against Human Papillomavirus Infection and Cervical Cancer

  • Jung Woon-Won;Chun Taehoon;Sul Donggeun;Hwang Kwang Woo;Kang Hyung-Sik;Lee Duck Joo;Han In-Kwon
    • Journal of Microbiology
    • /
    • 제42권4호
    • /
    • pp.255-266
    • /
    • 2004
  • Papillomaviruses infect a wide variety of animals, including humans. The human papillomavirus (HPV), in particular, is one of the most common causes of sexually transmitted disease. More than 200 types of HPV have been identified by DNA sequence data, and 85 HPV genotypes have been well char­acterized to date. HPV can infect the basal epithelial cells of the skin or inner tissue linings, and are, accordingly, categorized as either cutaneous or mucosal type. HPV is associated with a panoply of clin­ical conditions, ranging from innocuous lesions to cervical cancer. In the early 1980s, studies first reported a link between cervical cancer and genital HPV infection. Genital HPV infections are now rec­ognized to be a major risk factor in at least $95\%$ of cervical cancers. 30 different HPV genotypes have been identified as causative of sexually transmitted diseases, most of which induce lesions in the cervix, vagina, vulva, penis, and anus, as the result of sexual contact. There is also direct evidence demon­strating that at least four of these genotypes are prerequisite factors in cervical cancer. The main aim of this review was to evaluate the current literature regarding the pathovirology, diagnostics, vaccines, therapy, risk groups, and further therapeutic directions for HPV infections. In addition, we reviewed the current status of HPV infections in South Korean women, as evidenced by our data.