References
- McClintock B. CB. The origin and behavior of mutable loci in maize. Proc Natl Acad Sci U S A 1950;36:344-355. https://doi.org/10.1073/pnas.36.6.344
- SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, et al. Nested retrotransposons in the intergenic regions of the maize genome. Science 1996;274:765-768. https://doi.org/10.1126/science.274.5288.765
- Craig NL, Craigie R, Gellert M, Lambowitz AM. Mobile DNA II. Washington, DC: ASM Press, 2002.
- Pace JK 2nd, Feschotte C. The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage. Genome Res 2007;17:422-432. https://doi.org/10.1101/gr.5826307
- Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature 2001;409:860-921. https://doi.org/10.1038/35057062
- Mills RE, Bennett EA, Iskow RC, Devine SE. Which transposable elements are active in the human genome? Trends Genet 2007;23:183-191. https://doi.org/10.1016/j.tig.2007.02.006
- Kazazian HH Jr, Wong C, Youssoufian H, Scott AF, Phillips DG, Antonarakis SE. Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 1988;332:164-166. https://doi.org/10.1038/332164a0
- Deininger PL, Batzer MA. Alu repeats and human disease. Mol Genet Metab 1999;67:183-193. https://doi.org/10.1006/mgme.1999.2864
- Chen JM, Stenson PD, Cooper DN, Ferec C. A systematic analysis of LINE-1 endonuclease-dependent retrotranspositional events causing human genetic disease. Hum Genet 2005;117: 411-427. https://doi.org/10.1007/s00439-005-1321-0
- Callinan PA, Batzer MA. Retrotransposable elements and human disease. Genome Dyn 2006;1:104-115.
- Belancio VP, Hedges DJ, Deininger P. Mammalian non-LTR retrotransposons: for better or worse, in sickness and in health. Genome Res 2008;18:343-358. https://doi.org/10.1101/gr.5558208
- Kazazian HH Jr. Mobile elements: drivers of genome evolution. Science 2004;303:1626-1632. https://doi.org/10.1126/science.1089670
- Britten RJ. Transposable element insertions have strongly affected human evolution. Proc Natl Acad Sci U S A 2010;107:19945-19948. https://doi.org/10.1073/pnas.1014330107
- Kass DH, Jamison N, Mayberry MM, Tecle E. Identification of a unique Alu-based polymorphism and its use in human population studies. Gene 2007;390:146-152. https://doi.org/10.1016/j.gene.2006.07.035
- Tighe PJ, Stevens SE, Dempsey S, Le Deist F, Rieux-Laucat F, Edgar JD. Inactivation of the Fas gene by Alu insertion: retrotransposition in an intron causing splicing variation and autoimmune lymphoproliferative syndrome. Genes Immun 2002;3 Suppl 1:S66-S70.
- Mukherjee S, Mukhopadhyay A, Banerjee D, Chandak GR, Ray K. Molecular pathology of haemophilia B: identification of five novel mutations including a LINE 1 insertion in Indian patients. Haemophilia 2004;10:259-263. https://doi.org/10.1111/j.1365-2516.2004.00895.x
- Miki Y, Nishisho I, Horii A, Miyoshi Y, Utsunomiya J, Kinzler KW, et al. Disruption of the APC gene by a retrotransposal insertion of L1 sequence in a colon cancer. Cancer Res 1992;52:643-645.
- Miki Y, Katagiri T, Kasumi F, Yoshimoto T, Nakamura Y. Mutation analysis in the BRCA2 gene in primary breast cancers. Nat Genet 1996;13:245-247. https://doi.org/10.1038/ng0696-245
- Johnston JB, Silva C, Holden J, Warren KG, Clark AW, Power C. Monocyte activation and differentiation augment human endogenous retrovirus expression: implications for inflammatory brain diseases. Ann Neurol 2001;50:434-442. https://doi.org/10.1002/ana.1131
- Wallace MR, Andersen LB, Saulino AM, Gregory PE, Glover TW, Collins FS. A de novo Alu insertion results in neurofibromatosis type 1. Nature 1991;353:864-866. https://doi.org/10.1038/353864a0
- Guffanti G, Gaudi S, Fallon JH, Sobell J, Potkin SG, Pato C, et al. Transposable elements and psychiatric disorders. Am J Med Genet B Neuropsychiatr Genet 2014;165B:201-216.
- Belancio VP, Deininger PL, Roy-Engel AM. LINE dancing in the human genome: transposable elements and disease. Genome Med 2009;1:97. https://doi.org/10.1186/gm97
- Zhuang J, Wang J, Theurkauf W, Weng Z. TEMP: a computational method for analyzing transposable element polymorphism in populations. Nucleic Acids Res 2014;42:6826- 6838. https://doi.org/10.1093/nar/gku323
- Jurka J. Repbase update: a database and an electronic journal of repetitive elements. Trends Genet 2000;16:418-420. https://doi.org/10.1016/S0168-9525(00)02093-X
- Mills RE, Bennett EA, Iskow RC, Luttig CT, Tsui C, Pittard WS, et al. Recently mobilized transposons in the human and chimpanzee genomes. Am J Hum Genet 2006;78:671-679. https://doi.org/10.1086/501028
- Ponicsan SL, Kugel JF, Goodrich JA. Genomic gems: SINE RNAs regulate mRNA production. Curr Opin Genet Dev 2010;20:149-155. https://doi.org/10.1016/j.gde.2010.01.004
- Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution. Nat Rev Genet 2009;10:691-703. https://doi.org/10.1038/nrg2640
- Khodosevich K, Lebedev Y, Sverdlov E. Endogenous retroviruses and human evolution. Comp Funct Genomics 2002;3:494-498. https://doi.org/10.1002/cfg.216
- Brouha B, Schustak J, Badge RM, Lutz-Prigge S, Farley AH, Moran JV, et al. Hot L1s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci U S A 2003;100:5280-5285. https://doi.org/10.1073/pnas.0831042100
- Swergold GD. Identification, characterization, and cell specificity of a human LINE-1 promoter. Mol Cell Biol 1990;10:6718-6729. https://doi.org/10.1128/MCB.10.12.6718
- Babushok DV, Kazazian HH Jr. Progress in understanding the biology of the human mutagen LINE-1. Hum Mutat 2007;28:527-539. https://doi.org/10.1002/humu.20486
- Dewannieux M, Esnault C, Heidmann T. LINE-mediated retrotransposition of marked Alu sequences. Nat Genet 2003;35: 41-48. https://doi.org/10.1038/ng1223
- Weiner AM. SINEs and LINEs: the art of biting the hand that feeds you. Curr Opin Cell Biol 2002;14:343-350. https://doi.org/10.1016/S0955-0674(02)00338-1
- Ostertag EM, Goodier JL, Zhang Y, Kazazian HH Jr. SVA elements are nonautonomous retrotransposons that cause disease in humans. Am J Hum Genet 2003;73:1444-1451. https://doi.org/10.1086/380207
- Wang H, Xing J, Grover D, Hedges DJ, Han K, Walker JA, et al. SVA elements: a hominid-specific retroposon family. J Mol Biol 2005;354:994-1007. https://doi.org/10.1016/j.jmb.2005.09.085
- Cantrell MA, Scott L, Brown CJ, Martinez AR, Wichman HA. Loss of LINE-1 activity in the megabats. Genetics 2008;178:393-404. https://doi.org/10.1534/genetics.107.080275
- Carroll ML, Roy-Engel AM, Nguyen SV, Salem AH, Vogel E, Vincent B, et al. Large-scale analysis of the Alu Ya5 and Yb8 subfamilies and their contribution to human genomic diversity. J Mol Biol 2001;311:17-40. https://doi.org/10.1006/jmbi.2001.4847
- Roy-Engel AM, Carroll ML, Vogel E, Garber RK, Nguyen SV, Salem AH, et al. Alu insertion polymorphisms for the study of human genomic diversity. Genetics 2001;159:279-290.
- Roy-Engel AM, Carroll ML, El-Sawy M, Salem AH, Garber RK, Nguyen SV, et al. Non-traditional Alu evolution and primate genomic diversity. J Mol Biol 2002;316:1033-1040. https://doi.org/10.1006/jmbi.2001.5380
- Roy AM, Carroll ML, Nguyen SV, Salem AH, Oldridge M, Wilkie AO, et al. Potential gene conversion and source genes for recently integrated Alu elements. Genome Res 2000;10:1485-1495. https://doi.org/10.1101/gr.152300
- Roy AM, Carroll ML, Kass DH, Nguyen SV, Salem AH, Batzer MA, et al. Recently integrated human Alu repeats: finding needles in the haystack. Genetica 1999;107:149-161. https://doi.org/10.1023/A:1003941704138
- Batzer MA, Deininger PL. Alu repeats and human genomic diversity. Nat Rev Genet 2002;3:370-379. https://doi.org/10.1038/nrg798
- Konkel MK, Batzer MA. A mobile threat to genome stability: the impact of non-LTR retrotransposons upon the human genome. Semin Cancer Biol 2010;20:211-221. https://doi.org/10.1016/j.semcancer.2010.03.001
- Hedges DJ, Deininger PL. Inviting instability: transposable elements, double-strand breaks, and the maintenance of genome integrity. Mutat Res 2007;616:46-59. https://doi.org/10.1016/j.mrfmmm.2006.11.021
- Chen JM, Ferec C, Cooper DN. LINE-1 endonuclease-dependent retrotranspositional events causing human genetic disease: mutation detection bias and multiple mechanisms of target gene disruption. J Biomed Biotechnol 2006;2006:56182.
- Sobczak K, Krzyzosiak WJ. Structural determinants of BRCA1 translational regulation. J Biol Chem 2002;277:17349-17358. https://doi.org/10.1074/jbc.M109162200
- Landry JR, Medstrand P, Mager DL. Repetitive elements in the 5' untranslated region of a human zinc-finger gene modulate transcription and translation efficiency. Genomics 2001;76:110-116. https://doi.org/10.1006/geno.2001.6604
- Chen LL, Carmichael GG. Gene regulation by SINES and inosines: biological consequences of A-to-I editing of Alu element inverted repeats. Cell Cycle 2008;7:3294-3301. https://doi.org/10.4161/cc.7.21.6927
- Teugels E, De Brakeleer S, Goelen G, Lissens W, Sermijn E, De Greve J. De novo Alu element insertions targeted to a sequence common to the BRCA1 and BRCA2 genes. Hum Mutat 2005;26:284.
- Lobachev KS, Stenger JE, Kozyreva OG, Jurka J, Gordenin DA, Resnick MA. Inverted Alu repeats unstable in yeast are excluded from the human genome. EMBO J 2000;19:3822-3830. https://doi.org/10.1093/emboj/19.14.3822
- Voineagu I, Narayanan V, Lobachev KS, Mirkin SM. Replication stalling at unstable inverted repeats: interplay between DNA hairpins and fork stabilizing proteins. Proc Natl Acad Sci U S A 2008;105:9936-9941. https://doi.org/10.1073/pnas.0804510105
- Kolomietz E, Meyn MS, Pandita A, Squire JA. The role of Alu repeat clusters as mediators of recurrent chromosomal aberrations in tumors. Genes Chromosomes Cancer 2002;35:97-112. https://doi.org/10.1002/gcc.10111
- Onno M, Nakamura T, Hillova J, Hill M. Rearrangement of the human tre oncogene by homologous recombination between Alu repeats of nucleotide sequences from two different chromosomes. Oncogene 1992;7:2519-2523.
- Sen SK, Han K, Wang J, Lee J, Wang H, Callinan PA, et al. Human genomic deletions mediated by recombination between Alu elements. Am J Hum Genet 2006;79:41-53. https://doi.org/10.1086/504600
- Han K, Lee J, Meyer TJ, Remedios P, Goodwin L, Batzer MA. L1 recombination-associated deletions generate human genomic variation. Proc Natl Acad Sci U S A 2008;105:19366-19371. https://doi.org/10.1073/pnas.0807866105
- Gasior SL, Wakeman TP, Xu B, Deininger PL. The human LINE-1 retrotransposon creates DNA double-strand breaks. J Mol Biol 2006;357:1383-1393. https://doi.org/10.1016/j.jmb.2006.01.089
- Wilson AS, Power BE, Molloy PL. DNA hypomethylation and human diseases. Biochim Biophys Acta 2007;1775:138-162.
- Daskalos A, Nikolaidis G, Xinarianos G, Savvari P, Cassidy A, Zakopoulou R, et al. Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer. Int J Cancer 2009;124:81-87. https://doi.org/10.1002/ijc.23849
- Suter CM, Martin DI, Ward RL. Hypomethylation of L1 retrotransposons in colorectal cancer and adjacent normal tissue. Int J Colorectal Dis 2004;19:95-101. https://doi.org/10.1007/s00384-003-0539-3
- Yoder JA, Walsh CP, Bestor TH. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 1997;13:335-340. https://doi.org/10.1016/S0168-9525(97)01181-5
- Florl AR, Lower R, Schmitz-Drager BJ, Schulz WA. DNA methylation and expression of LINE-1 and HERV-K provirus sequences in urothelial and renal cell carcinomas. Br J Cancer 1999;80:1312-1321. https://doi.org/10.1038/sj.bjc.6690524
- Speek M. Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes. Mol Cell Biol 2001;21:1973-1985. https://doi.org/10.1128/MCB.21.6.1973-1985.2001
- Cruickshanks HA, Tufarelli C. Isolation of cancer-specific chimeric transcripts induced by hypomethylation of the LINE-1 antisense promoter. Genomics 2009;94:397-406. https://doi.org/10.1016/j.ygeno.2009.08.013
- Halling KC, Lazzaro CR, Honchel R, Bufill JA, Powell SM, Arndt CA, et al. Hereditary desmoid disease in a family with a germline Alu I repeat mutation of the APC gene. Hum Hered 1999;49:97-102. https://doi.org/10.1159/000022852
- Economou-Pachnis A, Tsichlis PN. Insertion of an Alu SINE in the human homologue of the Mlvi-2 locus. Nucleic Acids Res 1985;13:8379-8387. https://doi.org/10.1093/nar/13.23.8379
- Su LK, Steinbach G, Sawyer JC, Hindi M, Ward PA, Lynch PM. Genomic rearrangements of the APC tumor-suppressor gene in familial adenomatous polyposis. Hum Genet 2000;106:101-107. https://doi.org/10.1007/s004390051016
- Carlton VE, Harris BZ, Puffenberger EG, Batta AK, Knisely AS, Robinson DL, et al. Complex inheritance of familial hypercholanemia with associated mutations in TJP2 and BAAT. Nat Genet 2003;34:91-96. https://doi.org/10.1038/ng1147
- Hassan R, Ho M. Mesothelin targeted cancer immunotherapy. Eur J Cancer 2008;44:46-53. https://doi.org/10.1016/j.ejca.2007.08.028
- Edenberg HJ. Regulation of the mammalian alcohol dehydrogenase genes. Prog Nucleic Acid Res Mol Biol 2000;64:295-341. https://doi.org/10.1016/S0079-6603(00)64008-4
- Tsuchiya M, Nakao H, Katoh T, Sasaki H, Hiroshima M, Tanaka T, et al. Association between endometriosis and genetic polymorphisms of the estradiol-synthesizing enzyme genes HSD17B1 and CYP19. Hum Reprod 2005;20:974-978. https://doi.org/10.1093/humrep/deh726
- Kondo-Iida E, Kobayashi K, Watanabe M, Sasaki J, Kumagai T, Koide H, et al. Novel mutations and genotype-phenotype relationships in 107 families with Fukuyama-type congenital muscular dystrophy (FCMD). Hum Mol Genet 1999;8:2303-2309. https://doi.org/10.1093/hmg/8.12.2303
- Narita N, Nishio H, Kitoh Y, Ishikawa Y, Ishikawa Y, Minami R, et al. Insertion of a 5' truncated L1 element into the 3' end of exon 44 of the dystrophin gene resulted in skipping of the exon during splicing in a case of Duchenne muscular dystrophy. J Clin Invest 1993;91:1862-1867. https://doi.org/10.1172/JCI116402
- Meischl C, Boer M, Ahlin A, Roos D. A new exon created by intronic insertion of a rearranged LINE-1 element as the cause of chronic granulomatous disease. Eur J Hum Genet 2000;8:697-703. https://doi.org/10.1038/sj.ejhg.5200523
- Schwahn U, Lenzner S, Dong J, Feil S, Hinzmann B, van Duijnhoven G, et al. Positional cloning of the gene for X-linked retinitis pigmentosa 2. Nat Genet 1998;19:327-332. https://doi.org/10.1038/1214
- Ganguly A, Dunbar T, Chen P, Godmilow L, Ganguly T. Exon skipping caused by an intronic insertion of a young Alu Yb9 element leads to severe hemophilia A. Hum Genet 2003;113:348-352. https://doi.org/10.1007/s00439-003-0986-5
- Zarnack K, Konig J, Tajnik M, Martincorena I, Eustermann S, Stevant I, et al. Direct competition between hnRNP C and U2AF65 protects the transcriptome from the exonization of Alu elements. Cell 2013;152:453-466. https://doi.org/10.1016/j.cell.2012.12.023
- Mitchell GA, Labuda D, Fontaine G, Saudubray JM, Bonnefont JP, Lyonnet S, et al. Splice-mediated insertion of an Alu sequence inactivates ornithine delta-aminotransferase: a role for Alu elements in human mutation. Proc Natl Acad Sci U S A 1991;88:815-819. https://doi.org/10.1073/pnas.88.3.815
- Knebelmann B, Forestier L, Drouot L, Quinones S, Chuet C, Benessy F, et al. Splice-mediated insertion of an Alu sequence in the COL4A3 mRNA causing autosomal recessive Alport syndrome. Hum Mol Genet 1995;4:675-679. https://doi.org/10.1093/hmg/4.4.675
- Vervoort R, Gitzelmann R, Lissens W, Liebaers I. A mutation (IVS8+0.6kbdelTC) creating a new donor splice site activates a cryptic exon in an Alu-element in intron 8 of the human beta-glucuronidase gene. Hum Genet 1998;103:686-693.
- Mine M, Chen JM, Brivet M, Desguerre I, Marchant D, de Lonlay P, et al. A large genomic deletion in the PDHX gene caused by the retrotranspositional insertion of a full-length LINE-1 element. Hum Mutat 2007;28:137-142. https://doi.org/10.1002/humu.20449
Cited by
- Mobile DNA Elements: The Seeds of Organic Complexity on Earth vol.34, pp.10, 2015, https://doi.org/10.1089/dna.2015.2938
- Composition and evolutionary importance of transposable elements in humans and primates vol.37, pp.2, 2015, https://doi.org/10.1007/s13258-014-0249-y
- Element and Human Disease vol.14, pp.3, 2016, https://doi.org/10.5808/GI.2016.14.3.70
- lizards vol.283, pp.1840, 2016, https://doi.org/10.1098/rspb.2016.1555
- Emerging Role of Genomic Rearrangements in Breast Cancer: Applying Knowledge from Other Cancers vol.8s1, pp.1179-299X, 2016, https://doi.org/10.4137/BIC.S34417
- Frequency of Alu insertions within the ACE and PR loci in Northwestern Mexicans vol.10, pp.1, 2017, https://doi.org/10.1186/s13104-017-2673-y
- Transposons: Moving Forward from Preclinical Studies to Clinical Trials vol.28, pp.11, 2017, https://doi.org/10.1089/hum.2017.128
- Somatizing the transposons action vol.7, pp.3, 2017, https://doi.org/10.1080/2159256X.2017.1314236
- A Novel Type Pathway-Specific Regulator and Dynamic Genome Environments of a Solanapyrone Biosynthesis Gene Cluster in the Fungus Ascochyta rabiei vol.14, pp.11, 2015, https://doi.org/10.1128/EC.00084-15
- Molecular characterization of the t(4;12)(q27~28;q14~15) chromosomal rearrangement in lipoma vol.12, pp.3, 2016, https://doi.org/10.3892/ol.2016.4834
- Transposable Elements in Human Cancer: Causes and Consequences of Deregulation vol.18, pp.5, 2017, https://doi.org/10.3390/ijms18050974
- Natural Variation in the Distribution and Abundance of Transposable Elements Across the Caenorhabditis elegans Species vol.34, pp.9, 2017, https://doi.org/10.1093/molbev/msx155
- Border collies of the genome: domestication of an autonomous retrovirus-like transposon pp.1432-0983, 2018, https://doi.org/10.1007/s00294-018-0857-1
- Genetic and epigenetic characterization of the cry1Ab coding region and its 3′ flanking genomic region in MON810 maize using next-generation sequencing vol.244, pp.8, 2018, https://doi.org/10.1007/s00217-018-3062-z
- DNA methylation and socioeconomic status in a Mexican-American birth cohort vol.10, pp.1, 2018, https://doi.org/10.1186/s13148-018-0494-z