DOI QR코드

DOI QR Code

The Impact of Transposable Elements in Genome Evolution and Genetic Instability and Their Implications in Various Diseases

  • Ayarpadikannan, Selvam (Department of Biological Sciences, College of Natural Sciences, Pusan National University) ;
  • Kim, Heui-Soo (Department of Biological Sciences, College of Natural Sciences, Pusan National University)
  • Received : 2014.08.04
  • Accepted : 2014.08.18
  • Published : 2014.09.30

Abstract

Approximately 45% of the human genome is comprised of transposable elements (TEs). Results from the Human Genome Project have emphasized the biological importance of TEs. Many studies have revealed that TEs are not simply "junk" DNA, but rather, they play various roles in processes, including genome evolution, gene expression regulation, genetic instability, and cancer disposition. The effects of TE insertion in the genome varies from negligible to disease conditions. For the past two decades, many studies have shown that TEs are the causative factors of various genetic disorders and cancer. TEs are a subject of interest worldwide, not only in terms of their clinical aspects but also in basic research, such as evolutionary tracking. Although active TEs contribute to genetic instability and disease states, non-long terminal repeat transposons are well studied, and their roles in these processes have been confirmed. In this review, we will give an overview of the importance of TEs in studying genome evolution and genetic instability, and we suggest that further in-depth studies on the mechanisms related to these phenomena will be useful for both evolutionary tracking and clinical diagnostics.

Keywords

References

  1. McClintock B. CB. The origin and behavior of mutable loci in maize. Proc Natl Acad Sci U S A 1950;36:344-355. https://doi.org/10.1073/pnas.36.6.344
  2. SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, et al. Nested retrotransposons in the intergenic regions of the maize genome. Science 1996;274:765-768. https://doi.org/10.1126/science.274.5288.765
  3. Craig NL, Craigie R, Gellert M, Lambowitz AM. Mobile DNA II. Washington, DC: ASM Press, 2002.
  4. Pace JK 2nd, Feschotte C. The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage. Genome Res 2007;17:422-432. https://doi.org/10.1101/gr.5826307
  5. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature 2001;409:860-921. https://doi.org/10.1038/35057062
  6. Mills RE, Bennett EA, Iskow RC, Devine SE. Which transposable elements are active in the human genome? Trends Genet 2007;23:183-191. https://doi.org/10.1016/j.tig.2007.02.006
  7. Kazazian HH Jr, Wong C, Youssoufian H, Scott AF, Phillips DG, Antonarakis SE. Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 1988;332:164-166. https://doi.org/10.1038/332164a0
  8. Deininger PL, Batzer MA. Alu repeats and human disease. Mol Genet Metab 1999;67:183-193. https://doi.org/10.1006/mgme.1999.2864
  9. Chen JM, Stenson PD, Cooper DN, Ferec C. A systematic analysis of LINE-1 endonuclease-dependent retrotranspositional events causing human genetic disease. Hum Genet 2005;117: 411-427. https://doi.org/10.1007/s00439-005-1321-0
  10. Callinan PA, Batzer MA. Retrotransposable elements and human disease. Genome Dyn 2006;1:104-115.
  11. Belancio VP, Hedges DJ, Deininger P. Mammalian non-LTR retrotransposons: for better or worse, in sickness and in health. Genome Res 2008;18:343-358. https://doi.org/10.1101/gr.5558208
  12. Kazazian HH Jr. Mobile elements: drivers of genome evolution. Science 2004;303:1626-1632. https://doi.org/10.1126/science.1089670
  13. Britten RJ. Transposable element insertions have strongly affected human evolution. Proc Natl Acad Sci U S A 2010;107:19945-19948. https://doi.org/10.1073/pnas.1014330107
  14. Kass DH, Jamison N, Mayberry MM, Tecle E. Identification of a unique Alu-based polymorphism and its use in human population studies. Gene 2007;390:146-152. https://doi.org/10.1016/j.gene.2006.07.035
  15. Tighe PJ, Stevens SE, Dempsey S, Le Deist F, Rieux-Laucat F, Edgar JD. Inactivation of the Fas gene by Alu insertion: retrotransposition in an intron causing splicing variation and autoimmune lymphoproliferative syndrome. Genes Immun 2002;3 Suppl 1:S66-S70.
  16. Mukherjee S, Mukhopadhyay A, Banerjee D, Chandak GR, Ray K. Molecular pathology of haemophilia B: identification of five novel mutations including a LINE 1 insertion in Indian patients. Haemophilia 2004;10:259-263. https://doi.org/10.1111/j.1365-2516.2004.00895.x
  17. Miki Y, Nishisho I, Horii A, Miyoshi Y, Utsunomiya J, Kinzler KW, et al. Disruption of the APC gene by a retrotransposal insertion of L1 sequence in a colon cancer. Cancer Res 1992;52:643-645.
  18. Miki Y, Katagiri T, Kasumi F, Yoshimoto T, Nakamura Y. Mutation analysis in the BRCA2 gene in primary breast cancers. Nat Genet 1996;13:245-247. https://doi.org/10.1038/ng0696-245
  19. Johnston JB, Silva C, Holden J, Warren KG, Clark AW, Power C. Monocyte activation and differentiation augment human endogenous retrovirus expression: implications for inflammatory brain diseases. Ann Neurol 2001;50:434-442. https://doi.org/10.1002/ana.1131
  20. Wallace MR, Andersen LB, Saulino AM, Gregory PE, Glover TW, Collins FS. A de novo Alu insertion results in neurofibromatosis type 1. Nature 1991;353:864-866. https://doi.org/10.1038/353864a0
  21. Guffanti G, Gaudi S, Fallon JH, Sobell J, Potkin SG, Pato C, et al. Transposable elements and psychiatric disorders. Am J Med Genet B Neuropsychiatr Genet 2014;165B:201-216.
  22. Belancio VP, Deininger PL, Roy-Engel AM. LINE dancing in the human genome: transposable elements and disease. Genome Med 2009;1:97. https://doi.org/10.1186/gm97
  23. Zhuang J, Wang J, Theurkauf W, Weng Z. TEMP: a computational method for analyzing transposable element polymorphism in populations. Nucleic Acids Res 2014;42:6826- 6838. https://doi.org/10.1093/nar/gku323
  24. Jurka J. Repbase update: a database and an electronic journal of repetitive elements. Trends Genet 2000;16:418-420. https://doi.org/10.1016/S0168-9525(00)02093-X
  25. Mills RE, Bennett EA, Iskow RC, Luttig CT, Tsui C, Pittard WS, et al. Recently mobilized transposons in the human and chimpanzee genomes. Am J Hum Genet 2006;78:671-679. https://doi.org/10.1086/501028
  26. Ponicsan SL, Kugel JF, Goodrich JA. Genomic gems: SINE RNAs regulate mRNA production. Curr Opin Genet Dev 2010;20:149-155. https://doi.org/10.1016/j.gde.2010.01.004
  27. Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution. Nat Rev Genet 2009;10:691-703. https://doi.org/10.1038/nrg2640
  28. Khodosevich K, Lebedev Y, Sverdlov E. Endogenous retroviruses and human evolution. Comp Funct Genomics 2002;3:494-498. https://doi.org/10.1002/cfg.216
  29. Brouha B, Schustak J, Badge RM, Lutz-Prigge S, Farley AH, Moran JV, et al. Hot L1s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci U S A 2003;100:5280-5285. https://doi.org/10.1073/pnas.0831042100
  30. Swergold GD. Identification, characterization, and cell specificity of a human LINE-1 promoter. Mol Cell Biol 1990;10:6718-6729. https://doi.org/10.1128/MCB.10.12.6718
  31. Babushok DV, Kazazian HH Jr. Progress in understanding the biology of the human mutagen LINE-1. Hum Mutat 2007;28:527-539. https://doi.org/10.1002/humu.20486
  32. Dewannieux M, Esnault C, Heidmann T. LINE-mediated retrotransposition of marked Alu sequences. Nat Genet 2003;35: 41-48. https://doi.org/10.1038/ng1223
  33. Weiner AM. SINEs and LINEs: the art of biting the hand that feeds you. Curr Opin Cell Biol 2002;14:343-350. https://doi.org/10.1016/S0955-0674(02)00338-1
  34. Ostertag EM, Goodier JL, Zhang Y, Kazazian HH Jr. SVA elements are nonautonomous retrotransposons that cause disease in humans. Am J Hum Genet 2003;73:1444-1451. https://doi.org/10.1086/380207
  35. Wang H, Xing J, Grover D, Hedges DJ, Han K, Walker JA, et al. SVA elements: a hominid-specific retroposon family. J Mol Biol 2005;354:994-1007. https://doi.org/10.1016/j.jmb.2005.09.085
  36. Cantrell MA, Scott L, Brown CJ, Martinez AR, Wichman HA. Loss of LINE-1 activity in the megabats. Genetics 2008;178:393-404. https://doi.org/10.1534/genetics.107.080275
  37. Carroll ML, Roy-Engel AM, Nguyen SV, Salem AH, Vogel E, Vincent B, et al. Large-scale analysis of the Alu Ya5 and Yb8 subfamilies and their contribution to human genomic diversity. J Mol Biol 2001;311:17-40. https://doi.org/10.1006/jmbi.2001.4847
  38. Roy-Engel AM, Carroll ML, Vogel E, Garber RK, Nguyen SV, Salem AH, et al. Alu insertion polymorphisms for the study of human genomic diversity. Genetics 2001;159:279-290.
  39. Roy-Engel AM, Carroll ML, El-Sawy M, Salem AH, Garber RK, Nguyen SV, et al. Non-traditional Alu evolution and primate genomic diversity. J Mol Biol 2002;316:1033-1040. https://doi.org/10.1006/jmbi.2001.5380
  40. Roy AM, Carroll ML, Nguyen SV, Salem AH, Oldridge M, Wilkie AO, et al. Potential gene conversion and source genes for recently integrated Alu elements. Genome Res 2000;10:1485-1495. https://doi.org/10.1101/gr.152300
  41. Roy AM, Carroll ML, Kass DH, Nguyen SV, Salem AH, Batzer MA, et al. Recently integrated human Alu repeats: finding needles in the haystack. Genetica 1999;107:149-161. https://doi.org/10.1023/A:1003941704138
  42. Batzer MA, Deininger PL. Alu repeats and human genomic diversity. Nat Rev Genet 2002;3:370-379. https://doi.org/10.1038/nrg798
  43. Konkel MK, Batzer MA. A mobile threat to genome stability: the impact of non-LTR retrotransposons upon the human genome. Semin Cancer Biol 2010;20:211-221. https://doi.org/10.1016/j.semcancer.2010.03.001
  44. Hedges DJ, Deininger PL. Inviting instability: transposable elements, double-strand breaks, and the maintenance of genome integrity. Mutat Res 2007;616:46-59. https://doi.org/10.1016/j.mrfmmm.2006.11.021
  45. Chen JM, Ferec C, Cooper DN. LINE-1 endonuclease-dependent retrotranspositional events causing human genetic disease: mutation detection bias and multiple mechanisms of target gene disruption. J Biomed Biotechnol 2006;2006:56182.
  46. Sobczak K, Krzyzosiak WJ. Structural determinants of BRCA1 translational regulation. J Biol Chem 2002;277:17349-17358. https://doi.org/10.1074/jbc.M109162200
  47. Landry JR, Medstrand P, Mager DL. Repetitive elements in the 5' untranslated region of a human zinc-finger gene modulate transcription and translation efficiency. Genomics 2001;76:110-116. https://doi.org/10.1006/geno.2001.6604
  48. Chen LL, Carmichael GG. Gene regulation by SINES and inosines: biological consequences of A-to-I editing of Alu element inverted repeats. Cell Cycle 2008;7:3294-3301. https://doi.org/10.4161/cc.7.21.6927
  49. Teugels E, De Brakeleer S, Goelen G, Lissens W, Sermijn E, De Greve J. De novo Alu element insertions targeted to a sequence common to the BRCA1 and BRCA2 genes. Hum Mutat 2005;26:284.
  50. Lobachev KS, Stenger JE, Kozyreva OG, Jurka J, Gordenin DA, Resnick MA. Inverted Alu repeats unstable in yeast are excluded from the human genome. EMBO J 2000;19:3822-3830. https://doi.org/10.1093/emboj/19.14.3822
  51. Voineagu I, Narayanan V, Lobachev KS, Mirkin SM. Replication stalling at unstable inverted repeats: interplay between DNA hairpins and fork stabilizing proteins. Proc Natl Acad Sci U S A 2008;105:9936-9941. https://doi.org/10.1073/pnas.0804510105
  52. Kolomietz E, Meyn MS, Pandita A, Squire JA. The role of Alu repeat clusters as mediators of recurrent chromosomal aberrations in tumors. Genes Chromosomes Cancer 2002;35:97-112. https://doi.org/10.1002/gcc.10111
  53. Onno M, Nakamura T, Hillova J, Hill M. Rearrangement of the human tre oncogene by homologous recombination between Alu repeats of nucleotide sequences from two different chromosomes. Oncogene 1992;7:2519-2523.
  54. Sen SK, Han K, Wang J, Lee J, Wang H, Callinan PA, et al. Human genomic deletions mediated by recombination between Alu elements. Am J Hum Genet 2006;79:41-53. https://doi.org/10.1086/504600
  55. Han K, Lee J, Meyer TJ, Remedios P, Goodwin L, Batzer MA. L1 recombination-associated deletions generate human genomic variation. Proc Natl Acad Sci U S A 2008;105:19366-19371. https://doi.org/10.1073/pnas.0807866105
  56. Gasior SL, Wakeman TP, Xu B, Deininger PL. The human LINE-1 retrotransposon creates DNA double-strand breaks. J Mol Biol 2006;357:1383-1393. https://doi.org/10.1016/j.jmb.2006.01.089
  57. Wilson AS, Power BE, Molloy PL. DNA hypomethylation and human diseases. Biochim Biophys Acta 2007;1775:138-162.
  58. Daskalos A, Nikolaidis G, Xinarianos G, Savvari P, Cassidy A, Zakopoulou R, et al. Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer. Int J Cancer 2009;124:81-87. https://doi.org/10.1002/ijc.23849
  59. Suter CM, Martin DI, Ward RL. Hypomethylation of L1 retrotransposons in colorectal cancer and adjacent normal tissue. Int J Colorectal Dis 2004;19:95-101. https://doi.org/10.1007/s00384-003-0539-3
  60. Yoder JA, Walsh CP, Bestor TH. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 1997;13:335-340. https://doi.org/10.1016/S0168-9525(97)01181-5
  61. Florl AR, Lower R, Schmitz-Drager BJ, Schulz WA. DNA methylation and expression of LINE-1 and HERV-K provirus sequences in urothelial and renal cell carcinomas. Br J Cancer 1999;80:1312-1321. https://doi.org/10.1038/sj.bjc.6690524
  62. Speek M. Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes. Mol Cell Biol 2001;21:1973-1985. https://doi.org/10.1128/MCB.21.6.1973-1985.2001
  63. Cruickshanks HA, Tufarelli C. Isolation of cancer-specific chimeric transcripts induced by hypomethylation of the LINE-1 antisense promoter. Genomics 2009;94:397-406. https://doi.org/10.1016/j.ygeno.2009.08.013
  64. Halling KC, Lazzaro CR, Honchel R, Bufill JA, Powell SM, Arndt CA, et al. Hereditary desmoid disease in a family with a germline Alu I repeat mutation of the APC gene. Hum Hered 1999;49:97-102. https://doi.org/10.1159/000022852
  65. Economou-Pachnis A, Tsichlis PN. Insertion of an Alu SINE in the human homologue of the Mlvi-2 locus. Nucleic Acids Res 1985;13:8379-8387. https://doi.org/10.1093/nar/13.23.8379
  66. Su LK, Steinbach G, Sawyer JC, Hindi M, Ward PA, Lynch PM. Genomic rearrangements of the APC tumor-suppressor gene in familial adenomatous polyposis. Hum Genet 2000;106:101-107. https://doi.org/10.1007/s004390051016
  67. Carlton VE, Harris BZ, Puffenberger EG, Batta AK, Knisely AS, Robinson DL, et al. Complex inheritance of familial hypercholanemia with associated mutations in TJP2 and BAAT. Nat Genet 2003;34:91-96. https://doi.org/10.1038/ng1147
  68. Hassan R, Ho M. Mesothelin targeted cancer immunotherapy. Eur J Cancer 2008;44:46-53. https://doi.org/10.1016/j.ejca.2007.08.028
  69. Edenberg HJ. Regulation of the mammalian alcohol dehydrogenase genes. Prog Nucleic Acid Res Mol Biol 2000;64:295-341. https://doi.org/10.1016/S0079-6603(00)64008-4
  70. Tsuchiya M, Nakao H, Katoh T, Sasaki H, Hiroshima M, Tanaka T, et al. Association between endometriosis and genetic polymorphisms of the estradiol-synthesizing enzyme genes HSD17B1 and CYP19. Hum Reprod 2005;20:974-978. https://doi.org/10.1093/humrep/deh726
  71. Kondo-Iida E, Kobayashi K, Watanabe M, Sasaki J, Kumagai T, Koide H, et al. Novel mutations and genotype-phenotype relationships in 107 families with Fukuyama-type congenital muscular dystrophy (FCMD). Hum Mol Genet 1999;8:2303-2309. https://doi.org/10.1093/hmg/8.12.2303
  72. Narita N, Nishio H, Kitoh Y, Ishikawa Y, Ishikawa Y, Minami R, et al. Insertion of a 5' truncated L1 element into the 3' end of exon 44 of the dystrophin gene resulted in skipping of the exon during splicing in a case of Duchenne muscular dystrophy. J Clin Invest 1993;91:1862-1867. https://doi.org/10.1172/JCI116402
  73. Meischl C, Boer M, Ahlin A, Roos D. A new exon created by intronic insertion of a rearranged LINE-1 element as the cause of chronic granulomatous disease. Eur J Hum Genet 2000;8:697-703. https://doi.org/10.1038/sj.ejhg.5200523
  74. Schwahn U, Lenzner S, Dong J, Feil S, Hinzmann B, van Duijnhoven G, et al. Positional cloning of the gene for X-linked retinitis pigmentosa 2. Nat Genet 1998;19:327-332. https://doi.org/10.1038/1214
  75. Ganguly A, Dunbar T, Chen P, Godmilow L, Ganguly T. Exon skipping caused by an intronic insertion of a young Alu Yb9 element leads to severe hemophilia A. Hum Genet 2003;113:348-352. https://doi.org/10.1007/s00439-003-0986-5
  76. Zarnack K, Konig J, Tajnik M, Martincorena I, Eustermann S, Stevant I, et al. Direct competition between hnRNP C and U2AF65 protects the transcriptome from the exonization of Alu elements. Cell 2013;152:453-466. https://doi.org/10.1016/j.cell.2012.12.023
  77. Mitchell GA, Labuda D, Fontaine G, Saudubray JM, Bonnefont JP, Lyonnet S, et al. Splice-mediated insertion of an Alu sequence inactivates ornithine delta-aminotransferase: a role for Alu elements in human mutation. Proc Natl Acad Sci U S A 1991;88:815-819. https://doi.org/10.1073/pnas.88.3.815
  78. Knebelmann B, Forestier L, Drouot L, Quinones S, Chuet C, Benessy F, et al. Splice-mediated insertion of an Alu sequence in the COL4A3 mRNA causing autosomal recessive Alport syndrome. Hum Mol Genet 1995;4:675-679. https://doi.org/10.1093/hmg/4.4.675
  79. Vervoort R, Gitzelmann R, Lissens W, Liebaers I. A mutation (IVS8+0.6kbdelTC) creating a new donor splice site activates a cryptic exon in an Alu-element in intron 8 of the human beta-glucuronidase gene. Hum Genet 1998;103:686-693.
  80. Mine M, Chen JM, Brivet M, Desguerre I, Marchant D, de Lonlay P, et al. A large genomic deletion in the PDHX gene caused by the retrotranspositional insertion of a full-length LINE-1 element. Hum Mutat 2007;28:137-142. https://doi.org/10.1002/humu.20449

Cited by

  1. Mobile DNA Elements: The Seeds of Organic Complexity on Earth vol.34, pp.10, 2015, https://doi.org/10.1089/dna.2015.2938
  2. Composition and evolutionary importance of transposable elements in humans and primates vol.37, pp.2, 2015, https://doi.org/10.1007/s13258-014-0249-y
  3. Element and Human Disease vol.14, pp.3, 2016, https://doi.org/10.5808/GI.2016.14.3.70
  4. lizards vol.283, pp.1840, 2016, https://doi.org/10.1098/rspb.2016.1555
  5. Emerging Role of Genomic Rearrangements in Breast Cancer: Applying Knowledge from Other Cancers vol.8s1, pp.1179-299X, 2016, https://doi.org/10.4137/BIC.S34417
  6. Frequency of Alu insertions within the ACE and PR loci in Northwestern Mexicans vol.10, pp.1, 2017, https://doi.org/10.1186/s13104-017-2673-y
  7. Transposons: Moving Forward from Preclinical Studies to Clinical Trials vol.28, pp.11, 2017, https://doi.org/10.1089/hum.2017.128
  8. Somatizing the transposons action vol.7, pp.3, 2017, https://doi.org/10.1080/2159256X.2017.1314236
  9. A Novel Type Pathway-Specific Regulator and Dynamic Genome Environments of a Solanapyrone Biosynthesis Gene Cluster in the Fungus Ascochyta rabiei vol.14, pp.11, 2015, https://doi.org/10.1128/EC.00084-15
  10. Molecular characterization of the t(4;12)(q27~28;q14~15) chromosomal rearrangement in lipoma vol.12, pp.3, 2016, https://doi.org/10.3892/ol.2016.4834
  11. Transposable Elements in Human Cancer: Causes and Consequences of Deregulation vol.18, pp.5, 2017, https://doi.org/10.3390/ijms18050974
  12. Natural Variation in the Distribution and Abundance of Transposable Elements Across the Caenorhabditis elegans Species vol.34, pp.9, 2017, https://doi.org/10.1093/molbev/msx155
  13. Border collies of the genome: domestication of an autonomous retrovirus-like transposon pp.1432-0983, 2018, https://doi.org/10.1007/s00294-018-0857-1
  14. Genetic and epigenetic characterization of the cry1Ab coding region and its 3′ flanking genomic region in MON810 maize using next-generation sequencing vol.244, pp.8, 2018, https://doi.org/10.1007/s00217-018-3062-z
  15. DNA methylation and socioeconomic status in a Mexican-American birth cohort vol.10, pp.1, 2018, https://doi.org/10.1186/s13148-018-0494-z