• 제목/요약/키워드: DNA aptamer

검색결과 30건 처리시간 0.024초

Electrochemical Detection of $17{\beta}-estradiol$ by using DNA Aptamer Immobilized Nanowell Gold Electrodes

  • Kim, Yeon-Seok;Jung, Ho-Sup;Lee, Hea-Yeon;Kawai, Tomoji;Gu, Man-Bock
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2005년도 생물공학의 동향(XVI)
    • /
    • pp.88-92
    • /
    • 2005
  • Aptamer is the single-stranded oligonucleotide which binds to various target molecules such as proteins, peptides, lipids and small organic molecules with high affinity and specificity. DNA aptamers specific for the $17{\beta}-estradiol$ were selected by SELEX (Systematic Evolution of Ligands by EXponential enrichment) process from a random DNA library. These DNA aptamers have a high affinity to $17{\beta}-estradiol$ as an endocrine disrupting chemical. Nanowell and $200{\mu}m$ gold electrode were used as substrate for DNA aptamer immobilization and electrochemical analysis. Especially, nanowell gold electrode was fabricated by e-beam lithography. The size of single nanowell is 130nm and 40,000 nanowells were deposited on one gold electrode. The immobilization method was based on the interaction between the biotinylated aptamer and streptavidin deposited on gold electrode previously. Immobilization procedure was optimized by surface plasma resonance (SPR) and electrochemical analysis. After the immobilization of DNA aptamer on streptavidin modified gold electrode, $17{\beta}-estradiol$ solution was treated on aptamer immobilized gold electrode. The current of gold electrode was decreased by the binding of $17{\beta}-estradiol$ to DNA aptamer immobilized on gold electrode. However, in negative control experiments of 1-aminoanthraquinone and 2-methoxynaphthalene, the current was rarely decreased. And more sensitive data was obtained from nanowell gold electrode comparing with $200{\mu}m$ gold electrode.

  • PDF

Potential of Mean Force Simulation by Pulling a DNA Aptamer in Complex with Thrombin

  • Yang, Changwon;Kim, Eunae;Pak, Youngshang
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권11호
    • /
    • pp.3597-3600
    • /
    • 2012
  • Thrombin binding aptamter (TBA-15) is a 15-mer guanine-rich oligonucleotide. This DNA apamer specifically binds to the thrombin protein involved in blood coagulation. Using extensive umbrella sampling molecular dynamics simulation method at all atom level, we investigated the potential of mean force (PMF) upon pulling the DNA aptamer from the binding mode of aptamer/thrombin complex. From this calculation, the free energy cost for a full dissociation of this aptamer/protein complex is 17 kcal/mol, indicating a substantial binding affinity of TBA-15. Interestingly, this PMF reveals noticeable plateau regions along the pulling coordinate. Possible structural changes of this complex in the plateau were investigated in details.

Detection for folding of the thrombin binding aptamer using label-free electrochemical methods

  • Cho, Min-Seon;Kim, Yeon-Wha;Han, Se-Young;Min, Kyung-In;Rahman, Md. Aminur;Shim, Yoon-Bo;Ban, Chang-Ill
    • BMB Reports
    • /
    • 제41권2호
    • /
    • pp.126-131
    • /
    • 2008
  • The folding of aptamer immobilized on an Au electrode was successfully detected using label-free electrochemical methods. A thrombin binding DNA aptamer was used as a model system in the presence of various monovalent cations. Impedance spectra showed that the extent to which monovalent cations assist in folding of aptamer is ordered as $K^+$ > $NH_4^+$ > $Na^+$ > $Cs^+$. Our XPS analysis also showed that $K^+$ and $NH_4^+$ caused a conformational change of the aptamer in which it forms a stable complex with these monovalent ions. Impedance results for the interaction between aptamer and thrombin indicated that thrombin interacts more with folded aptamer than with unfolded aptamer. The EQCM technique provided a quantitative analysis of these results. In particular, the present impedance results showed that thrombin participates a folding of aptamer to some extent, and XPS analysis confirmed that thrombin stabilizes and induces the folding of aptamer.

압타머 광학 바이오센서 (Aptamer-based optical switch for biosensors)

  • 이주운;조정환;조은정
    • 분석과학
    • /
    • 제27권3호
    • /
    • pp.121-139
    • /
    • 2014
  • In this review, we will discuss aptamer technologies including in vitro selection, signal transduction mechanisms, and designing aptamers and aptazyme for label-free biosensors and catalysts. Dye-displacement, a typical label-less method, is described here which allows avoiding relatively complex labeling steps and extending this application to any aptamers without specific conformational changes, in a more simple, sensitive and cost effective way. We will also describe most recent and advanced technologies of signaling aptamer and aptazyme for the various analytical and clinical applications. Quantum dot biosensor (QDB) is explained in detail covering designing and adaptations for multiplexed protein detection. Application to aptamer array utilizing self-assembled signaling aptamer DNA tile and the novel methods that can directly select smart aptamer or aptazyme experimentally and computationally will also be finally discussed, respectively.

Sensitive and Extraction-Free Detection of Methicillin-Resistant Staphylococcus aureus through Ag+ Aptamer-Based Color Reaction

  • Hongli Cao;Guosheng Zhang;Hui Ma;Zhongwen Xue;Ran Huo;Kun Wang;Zijin Liu
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권1호
    • /
    • pp.192-197
    • /
    • 2024
  • Refractory infections, such as hospital-acquired pneumonia, can be better diagnosed with the assistance of precise methicillin-resistant Staphylococcus aureus (MRSA) testing. However, traditional methods necessitate high-tech tools, rigorous temperature cycling, and the extraction of genetic material from MRSA cells. Herein, we propose a sensitive, specific, and extraction-free strategy for MRSA detection by integrating allosteric probe-based target recognition and exonuclease-III (Exo-III)-enhanced color reaction. The penicillin-binding protein 2a (PBP2a) aptamer in the allosteric probe binds with MRSA to convert protein signals to nucleic acid signals. This is followed by the DNA polymerase-assisted target recycle and the production of numerous single-strand DNA (ssDNA) chains which bind with silver ion (Ag+) aptamer to form a blunt terminus that can be identified by Exo-III. As a result, the Ag+ aptamer pre-coupled to magnetic nanoparticles is digested. After magnetic separation, the Ag+ in liquid supernatant catalyzes 3,3',5,5'-tetramethylbenzidine (TMB) for a color reaction. In addition, a concentration of 54 cfu/mL is predicted to be the lowest detectable value. Based on this, our assay has a wide linear detection range, covering 5 orders of magnitude and demonstrating a high specificity, which allows it to accurately distinguish the target MRSA from other microorganisms.

Aptamer Based SPREETA Sensor for the Detection of Porphyromonas gingivalis G-Protein

  • Suk-Gyun Park;Hyun Ju Lee;Taeksoo Ji;Kyungbaek Kim;Seung-Ho Ohk
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권2호
    • /
    • pp.289-295
    • /
    • 2024
  • We have developed an aptamer that specifically binds to Porphyromonas gingivalis to reduce the cellular damage caused by P. gingivalis infection and applied it as a biosensor. P. gingivalis is one of the major pathogens causing destructive periodontal disease among the periodontal microorganisms constituting complex biofilms. Porphyromonas gingivalis G-protein (PGP) known to play an important role in the transmission of germs was used as a target protein for the screening of aptamer. The aptamer that has binds to the G-protein of P. gingivalis, was screened and developed through the Systemic Evolution of Ligands by Exponential Energy (SELEX) method. Modified-Western blot analysis was performed with the aptamer which consisted of 38 single-stranded DNA to confirm the selectivity. ELONA (enzyme linked oligonucleotide assay) used to confirm that the aptamer was sensitive to PGP even at low concentration of 1 ㎍/ml. For the rapid detection of P. gingivalis, we constructed a surface plasmon resonance biosensor with SPREETA using the PGP aptamer. It was confirmed that PGP could be detected as low concentration as at 0.1 pM, which is the minimum concentration of aptamer sensor within 5 min. Based on these results, we have constructed a SPREETA biosensor based on aptamer that can bind to P. gingivalis G-protein. It can be used as an infection diagnosis system to rapidly diagnose and analyze oral diseases caused by P. gingivalis.

DNA 컴퓨팅에서의 앱타머 구조 변환 활용 방안 (Application of Structure-Switching Signaling Aptamers in DNA computing)

  • 김수동;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 가을 학술발표논문집 Vol.30 No.2 (2)
    • /
    • pp.838-840
    • /
    • 2003
  • 특정 단백질과 특이적으로 결합하는 핵산인 앱타머 (aptamer) 의 존재는, DNA 기반 컴퓨팅과 단백질 기반 컴퓨팅 사이에서 가교 역할을 할 수 있다는 가능성을 고려할 때 주목할 만하다. 본고에서는 전통적인 DNA 기반 컴퓨팅 방법론의 확장으로서, 앱타머 구조 변환의 활용 방안을 제안하였다.

  • PDF

Antibiofilm Activity and Binding Specificity of Polyclonal DNA Aptamers on Staphylococcus aureus and Escherichia coli

  • Arizah Kusumawati;Apon Zaenal Mustopa;Rifqiyah Nur Umami;Adi Santoso;I Wayan Teguh Wibawan;Agus Setiyono;Mirnawati Bachrum Sudarwanto
    • 한국미생물·생명공학회지
    • /
    • 제50권3호
    • /
    • pp.328-336
    • /
    • 2022
  • Aptamers are short, chemically synthesized, single-stranded DNA or RNA oligonucleotides that fold into unique three-dimensional structures. In this study, we aim to determine the antibiofilm activity and binding specificity of the six polyclonal DNA aptamers (S15K3, S15K4, S15K6, S15K13, S15K15, and S15K20) on Staphylococcus aureus BPA-12 and Escherichia coli EPEC 4. Aptamer S15K6 showed the highest percentage of antibiofilm activity against S. aureus BPA-12 (37.4%) as shown by the lowest OD570 value of 0.313. Aptamer S15K20 showed the highest percentage of antibiofilm activity against E. coli EPEC 4 (15.4%) as shown by the lowest OD570 value of 0.515. Aptamers S15K13 and S15K20 showed antibiofilm activities against both S. aureus BPA-12 and E. coli EPEC4, and thus potentially have broad reactivity. Furthermore, based on the binding capacity and Kd values from our previous study, the binding specificity assay of selected polyclonal DNA aptamers (S15K3 and S15K15) against S. aureus BPA-12, E. coli EPEC 4, S. aureus BPA-6, S. agalactiae, E. coli MHA-6, and Listeria monocytogenes were performed using qPCR. Aptamers S15K3 and S15K15 showed specific binding to S. aureus BPA-12, E. coli EPEC 4, S. aureus BPA-6, and S. agalactiae, but could not bind to E. coli MHA-6 and L. monocytogenes. Therefore, this study showed that the polyclonal DNA aptamers have antibiofilm activity and were able to bind to S. aureus BPA-12 and E. coli EPEC 4 bacteria.

폐암 조기 진단을 위한 단백질 바이오마커 측정용 전압-전류법 기반의 나노바이오 분석법 개발 (Development of Voltammetric Nanobio-incorporated Analytical Method for Protein Biomarker Specific to Early Diagnosis of Lung Cancer)

  • 리징징;스윈페이;누드듀돈타뉴;이혜진
    • 공업화학
    • /
    • 제32권4호
    • /
    • pp.461-466
    • /
    • 2021
  • 본 논문에서는 이동성이 좋고 경제적이며, 간편하게 일회용 진단칩으로 제작 가능한 스크린 프린팅 한 탄소칩 전극[screen printed carbon electrode (SPCE)] 기반의 전압전류법 나노물질 융합형 바이오센서를 제작하여 폐암 조기진단에 활용 가능한 단백질 표지 인자 중에 하나인 heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) 단백질의 농도를 정량 분석하고자 하였다. 먼저 SPCE 표면에 금 나노입자를 전기적으로 증착한 후 크로스링커를 이용하여 hnRNP A1에 특이적으로 결합할 수 있는 바이오리셉터인 DNA 압타머를 고정하였다. Ethanolamine을 블로킹 시약으로 사용하여 압타머와 함께 센서 표면에 고정하여 그 표면을 처리함으로써 비특이적인 생물질의 흡착에 의한 방해 신호를 최소화하고자 하였다. DNA칩과 hnRNP A1 용액을 접촉하여 DNA와 hnRNP A1을 결합시킨 후 alkaline phosphatase (ALP) 효소로 접합한 hnRNP A1 항체(anti-hnRNP A1)을 센서칩 표면으로 주입하여 샌드위치 복합체를 형성하고, 이를 기질인 4-aminophenyl phosphate (APP)와 효소-기질 특이적 산화 반응에 의한 전류 변화를 순환 전압전류법과 시차 펄스전압전류법으로 측정하여 단백질의 농도를 정량적으로 분석하였다. 상기 산화 반응에 의한 피크 전류 변화는 순환전압전류법과 시차 펄스 전압전류법을 사용할 때 -0.05와 -0.17 V (vs. Ag/AgCl) 전위 값에서 각각 일어났다. 개발한 나노바이오센서를 실제 정상인 혈청 시료 분석에 적용 가능함을 보여줌으로써 혈청 한 방울로 폐암의 조기진단 가능성을 제시하고자 하였다.

대장균 tRNAVal에 결합하는 RNA Aptamer들의 시험관내 선별 (In vitro Selection of RNA Aptamers which Bind to Escherichia coli tRNAVal)

  • 조봉래
    • 대한화학회지
    • /
    • 제46권2호
    • /
    • pp.157-163
    • /
    • 2002
  • $tRNA^{Val}$에 결합하는 RNA 요소들을 확인하기 위해 SELEX 방법을 수행하였다. 양끝에 보존된 primer 서열을 가지고 가운데 무작위의 48-mer 올리고 누클레오티드 영역을 가진 DNA 문고를 T7 RNA 중합효소를 이용하여 전사시켜 얻은 RNA pool을 가지고 $tRNA^{Val}$이 고정된 affinity column을 이용하여 14번의 선별 과정을 거쳐 FNA aptamer들을 선별하였다. 몇몇 aptamer들은 세 가지 rRNA들의 고리 영역에 있는 서열과 유사한 서열을 가졌다: 5S rRNA의 C43GAAC47 서열, 16S rRNA의 G1491AAGU1495와 G1379UUCC1383 서열 그리고 23S rRNA의 C1064UUAG1068, G2110UGUA2114, C2480GACGG2485와 A2600CAGU2604 서열. 이 결과들은 $tRNA^{Val}$가 리보솜에서 5S rRNA, 16S rRNA 및 23S rRNA와 다양하게 상호작용 할 수 있다는 것을 암시한다.